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Preface

This book is a collection of articles addressing a range of topics in the
theory of discrete groups; for the most part the papers represent talks deliv-
ered at a conference held at the University of Birmingham in January 1991
to mark the retirement of A. M. Macbeath from his chair at the University
of Pittsburgh.

The central theme of the volume is the study of groups from a geometric
point of view. Of course, the geometric aspect takes many forms; thus one
may find a group which operates on Euclidean or hyperbolic space rubbing
shoulders with free groups or some generalisation studied with the help
of graphs or homological algebra. Groups with presentation also relate to
abstract or formal geometry: in recent years the study of groups which act
on trees has brought algebraic structures back into the geometric fold, and
the seminal idea that a countable group itself carries a geometric essence
has reinforced this return to geometry within rather than through group
theory, giving Klein’s Programme a fresh cutting edge.

A major part of group theory today relates directly to explicit algebraic
or geometric objects — permutation groups, Coxeter groups and discrete
subgroups of Lie groups are prominent — and one of the strengths of this
field lies in the wealth of fascinating interactions with complex analysis and
low dimensional topology. The serious study of discrete groups via com-
binatorial techniques began in hyperbolic space with Poincaré and Dehn,
and the reader will find here many echoes of their original ideas and in-
terests. In particular, applications of the structural properties of Fuchsian
and crystallographic groups, the representation of finite groups as automor-
phisms of surfaces, orientable or not, and the continuing drive to understand
the classification of manifolds in low dimension by way of numerical invari-
ants, such as Euler characteristic or invariant volume; for instance, a topic
of great interest recently has been the attempt to estimate the minimum
volume attained by a compact hyperbolic 3-manifold.

Other articles address wider issues including the arithmetic and analysis
of automorphic forms, the geometry of moduli spaces, deformation theory
of discrete groups in hyperbolic space and applications in mathematical
physics. Several authors provide a review of their general area of study.
All reflect something of the field in which Murray Macbeath has worked
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predominantly during much of his mathematical career and this conference
provided clear testimony to the continuing vitality of both.

The editors are very grateful to all who helped in the production of
this volume, especially to the referees who performed their traditional act
of altruism with skill, dedication and (above all) willingness. For the run-
ning of the Birmingham conference we are greatly indebted to the London
Mathematical Society, which provided a generous grant, to the University
of Birmingham Mathematics department for the welcome and hospitality
they extended to us, and especially to Dr. A. H. M. Hoare who organised
all the local arrangements. Finally, of course, we thank Murray for making
it possible both by furnishing the mathematical focus over the years and by
providing us with the perfect excuse for such an enjoyable occasion. We all
wish him a long, happy and productive retirement.



Symmetries of modular surfaces

M. Akbas and D. Singerman

To Murray Macbeath on the occasion of his retirement

1. Introduction

Let I' = PSL(2,2) be the rational modular group and T'(N), T'o(N)
denote the subgroups represented by the matrices

(2 s) el (2 2) =26 ) mrr).
(2 2)esmeamesomn]

respectively. Let U denote the upper half-plane and U* = UUQU{oo}. Let
X(N)=U*/T(N), Xo(N) =U*/To(N). Then X(N), Xo(N) are compact
Riemann surfaces.

A Riemann surface X is symmetric if it admits an anticonformal involu-
tion (or as we shall call it, symmetry) t. If X has genus ¢ then by Harnack’s
Theorem, the fixed point set of t consists of & simple closed curves where
0 <k < g+ 1. We shall call each such simple closed curve a mairror of
t. The mirrors of a symmetry may either (i) divide the surface X into two
homeomorphic components or (ii) not divide X. In case (i) we say that t has
species +k and in case (ii) we say that t has species —k. It follows that the
species of ¢t has a + (respectively —) sign if and only if X/{(t) is orientable
(respectively non-orientable). See [3] for an account of the general theory.
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As the transformation z — —Z normalizes I'(N) and T'g(N) it induces a
symmetry on the surfaces X(N) and X¢(N) (which by abuse of language
we call “the symmetry 2 — —z of X(N), or Xo(N)”). The surfaces Xo(N)
also admit a symmetry induced by the “Fricke symmetry” = — 1/NZ and
we also discuss this.

Our aim here is to summarize the work done that enables us to find the
species of these symmetries. As the surfaces X(NV), Xo(N) also have cusps
(at the projections of the parabolic fixed points) another question of interest
is to determine the number of cusps on each mirror. The work we report
on comes mainly from four sources. The first two ([7], [10]) were concerned
with real points on modular curves and are probably not well-known to
workers on discrete groups and Riemann surfaces. The second two are from
the Ph.D. theses of the first author and Stephen Harding ([1], [4]). Also sce
[11] for a number-theoretic application of similar ideas.

These questions are closely related to that of determining the signatures
of the NEC groups

L(N) = (O(N),z = =2),  To() = (To(N),2 = —2),
Tp(N)={To(N),z— 1/Nz).
We recall that the signature of a NEC group A has the form
(g5 £5 [mas. .. smy); {(nll>--'anlsl)---(nkla---ank.sk)}

where ¢ is the genus of U/A, my,...,m, are the periods of A and n,; are
the link periods. (See [2], [3], [9], [12]). In these references the groups
A have compact quotient space and so the integers m;, n;; are finite, In
this paper the NEC groups are all commensurable with the modular group
and so have parabolic elements. As usual these are represented by infinite
periods so that the number of infinite periods in a period cycle correspond
to the number of cusps around the hole represented by that period cycle.

EXAMPLE. The extended modular group
['=T(1)=To(1) = (I, z > —z) 2 PGL(2, 7).

This is generated by 3 reflections: ¢; : 2 = —Z, c0: 2 = 1/Z, c3: 2 = —2-1

or in terms of matrices
01 1 1
1 0/’ 0 -1

(6 5):
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the fundamental domain being bounded by the 3 axes of reflection

Re(z) =0, |z] =1, Re(z) =

2

Its boundary contains elliptic fixed points at ¢ and (1 + 2\/5)/2 of orders
2 and 3 and there is a parabolic fixed point at co. These correspond to
the elements cyco of order 2, cocs of order 3 and the parabolic cyc3. The
signature of T is {0; +; [-]; {(2,3,00)} and the quotient U* /T is a disc whose
boundary contains two branch points and one cusp.

REMARK. If A is a NEC group with sense-reversing transformations then
we let At denote the subgroup of index 2 consisting of the sense-preserving
transformations of A. Then U/A* (or U* /A if appropriate) is the canonical
double cover of U/A (or U*/A). (See [2], 0.1.12). The mirrors of U/At are
in one-to-one correspondence with the boundary components of U/A. As
(f(N))"‘ = T'(N), (fo(N))+ = [o(N), the mirrors of X(N), (respectively
Xo(N)), correspond to the boundary components of X(N) = U*/f(N)
(respectively Xo(N) = U*/fo(N)).

2. The mirrors of X(N)

To describe the number of mirrors of X(N) we introduce an arithmetic
function «(N') defined as follows: a(N) is the least positive integer such that
20(N) = 41 mod N. If Uy denotes the groups of units mod N then o N)
is the order of the image of 2 in Uy /{+£1} so that if N > 2, 2a(N)|¢(N),
where ¢ is Euler’s function. The following Theorems are proved in [1], [7].

THEOREM 1. The number of mirrors of the symmetry z — —z of X(N) is
given by

$(N)/2a(N)  if N >1isodd

$(N)/2 i#f N >2iseven

1 N =2,

THEOREM 2. The number of cusps on each mirror is given by

2a(N) N odd

6 N=2mod4, N >2
4 N =0 mod 4

3 N=2
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The proofs in [1] and [7] are rather different. In [1] the proof is algebraic and
uses Hoare’s Theorem on subgroups of NEC groups [5]. This theorem gives
a general method for computing the signature of a subgroup A, of a NEC
group A given the signature of A and the permutation representation of
the generators of A on the right A;-cosets. In our case A = f, A = f(N)
and the generators of T are ¢y, c2, c3 above.

In [7], a more geometric approach is used, and involves calculating the
cusps on the mirrors. We denote the I'(N)-orbit of a rational number a/b

by (2) The reflection z — —z of X(N) fixes (Z) if (Z) = (_ba>'

Such a fixed cusp is called a real cusp. (For an account of the connection
between NEC groups and real algebraic geometry see [2].) For example, if
N is odd the real cusps on X(N) are, according to lemma 1 of [7], of the

¢ , (u,N) = 1}. This gives a total

N —
form ilgug

N
of ¢(N) cusps as implied by Theorems 1 and 2. Two real cusps are joined
if they have lifts in U* which are joined by an axis of reflection of f(N)
This axis then projects to a segment of a mirror on X(N). By finding all
such segments we can find all the mirrors and the number of cusps on each

mirror.

The sign of the species. Theorem 1 gives the number of mirrors of
the reflection z — —Z of X(N). We now investigate whether the mirrors
separate or do not separate the surface, i.e. whether the species has a +
sign or — sign. (See §1). This sign is the same as the sign in the signature
of f(N ) and this can be determined by Theorem 2 of [6). We consider the
Schreier coset graph H = ’H(F F(N) ®) whose vertices are the F(N) cosets
of T and where & = {c1,¢c2,c3}, the generators of T'. We then form the graph
H by deleting the loops from H. Then F(N) is orientable if and only if all
circuits of H have even length. Harding [4] investigated the orientability in
the case N = p a prime. We describe his method. First of all let

_ _ 0 1 ko Uk Uk+41
A =cicoc3 = (1 1) . Then AY = (uk+1 s

where uy is the k** Fibonacci number, (u; = 0,uy = 1,ug42 = Uppy + ui).
We consider the path that corresponds to the word

k
C1C2€3C1C2C3 ... C1Cc3 = A",

To find the corresponding path in H we search for the loops in this path.
These occur if either
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() N(p)d*c, =T(p)er, (i) T(p)A*ere, = B(p)ey
or (iii) f(p)Ak+l = f(p)c1c2.

It is easy to calculate that (i) occurs if and only if ux4+1 = 0 mod p, (ii) can
occur only if p = 3 and (iii) never occurs. Thus if p > 3, the only loops in
‘H occur when uj4, = 0 mod p. Also urugys — uiﬂ = detA* = (—l)k. If
ugt+1 = 0 mod p then ury2 = ux mod p and so u = (—1)* mod p. Now
suppose that p = 3 mod 4. Then —1 is not a square mod p so that % is even,
uy = £1 mod p and so A* € f(p) A loop does occur at the beginning of the
path as ¢, € f(p) The path closes again when we have reached (c;cyc3)*
with %k the first integer such that x4 = 0 mod p and there are no other
loops before then. Thus the corresponding circuit in H has length 3k — 1
which is odd as & is even. Thus we have proved (using [6] Theorem 2)

THEOREM 3. If p > 3 and p = 3 mod 4 is prime then the mirrors of the
symmetry z — —z of X(p) do not separate X(p).

By drawing the Schreier coset graphs for p = 2,3,5 Harding showed
that X(2), X(3) and X(5) are orientable (so the mirrors do separate in
these cases). For other primes p = 1 mod 4 he considered the element

B = cicacs(cres)® ™t = (0 i) (s €N).

1
Then B* — ( te trga
tet1 thyo

with t; =0, to = 1, ty 4o = str41 +1k, a generalized Fibonacci sequence. By
pursuing an analysis similar to the above Harding showed that X (p) is non-
orientable for all primes p with 5 < p < 1000. Since for non-orientability
we only need one circuit in H of odd length, it seems very likely that X (p)
is non-orientable for all primes p > 5.

To illustrate the results of this section we give the species of the sym-
metries z — —z of X(p) for all primes p < 100.

p 2 3 5 7 11 13 17 19 23 29 31 37
species +1 4+1 41 -1 -1 -1 -2 -1 -1 -1 -3 -1

p 41 43 47 33 59 61 67 71 73 79 83 89 97
species -2 -3 -1 -1 -1 -1 -1 -1 -4 -1 -1 -4 =2
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3. The mirrors of X,(IN)

The number of mirrors of the symmetry z — —z of Xo(N) and the
number of cusps on each mirror were calculated by the first author in [1]
using Hoare’s Theorem and by Ogg [10] using a technique similar to Jaffee’s
described previously. The results are as follows. (The notation m||n means
that m is an exact divisor of n, i.e. m|n and (m,n/m) = 1, and r is the
number of distinct prime factors of N).

THEOREM 4. The number of mirrors of the symmetry z — —Z of Xo(N)
and the number of cusps on each mirror is given by the following table

N odd 2 2|N, N >2 4 | 4||N,N >4 8|N
MmIITors or-1 1 or—2 1 gr—2 or—1
cusps 2 2 4 3 6 4

The sign of the species. In [4], Harding calculated the sign of the species
of the symmetry z — —Z of Xo(p) for all primes p. We describe his method.
The group N PGL(2,2) acts transitively on the p + 1 points of the pro-
jective line GF(p)U {oo} by

a b . at+ b
- —.
c d ct+d
In particular c;, co, c3 act as follows:

c it — 1/t co:t— 1/t cg:t— —1—t

so that ¢, fixes 0,00, c; fixes +1, c3 fixes —%, o0o. The stabilizer of oo
has index p + 1 and contains I'y(p) and ¢, . Hence Stab(co) = fo(p).
Thus the vertices of the Schreier coset graph Ho(p) = ’H(f‘, fo(p), ®), where
® = {cy,cz,c3}, can be identified with GF(p)U{oo}. As before we form the
graph Ho(p) obtained by deleting the loops of Ho(p), and if we find circuits
of odd length then the sign in the signature of T'y(p) is —. We first consider

the word c;cocs. If we begin at © € GF(p) — {O} we get the path

C1 C2 C3
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If z # +1 then c2 does not fix —z. If z # 0 or 2 then c3 does not fix —z~!.
This path closes if z = ™! — 1 or # = (=1 £ v/5)/2. Thus if the Legendre
symbol (%) = +1 then we can find z so that the above path is a triangle.
We cannot have loops unless p = 2. For example, 1 = (=1 £ 1/5)/2 is not
true in GF(p) if p > 2. Thus if (%) = +1, (p > 2) then Ho(p) has a triangle.
We now consider the word cjcac3ercs.

1 C2 C3 C1 c3
[ ] [ ] [ ] [ ] [ ] [ ]

T -z —z z~ -1 11—z =2

This gives a closed path if z = 27! — 2 or z = —1 + /2. Thus if (%) =+1
we can find z giving a closed path. It is now possible to get loops. For
example —z~!' =z ' — 1 givesz =2 but if p =7, 2 = 1 + V2. However
if (%) = +1 (equivalent to p = £1 mod 8) and if p > 7 then there are no
loops and we have a circuit of odd length in Ho(p).

Thus if (%) =41 or (%) = +1 and p > 7 then we can find a circuit of
odd length. Now we consider the word cyczeicocs(cie3)? of length 13. We
find a closed circuit at z if z = -2 + \/IO which exists if (1—:-) = +1, and in
particular if (%) = (%) = —1. We also find that this circuit can only have
loops if p = 3, 13 or 31. However (331-) = +1 so this case has been covered
already. Hence we can find a circuit of odd length in Ho(p) for all primes p
except p = 2, 3, 5, 7, 13. If we draw the coset graphs Ho(p) in these cases
we see that there are no circuits of odd length. For example if p = 5 we get

1
C2 C3 C1 3
° ° ———o e
o0 0 4 1 3 ¢ 2

We have therefore proved

THEOREM 5. Ifp =2, 3, 5, 7, 13 then the mirrors of the symmetry z — —Zz
of Xo(p) separate the surface. For all other primes the mirrors do not
separate.

Mirrors of the Fricke reflection. The group I'g(N) is normalized by
the Fricke involution Wy : z — —1/Nz and thus it is also normalized by
the reflection Wy : z — 1/Nz which we shall call the Fricke reflection.
Therefore Wy induces a symmetry @y of Xo(N).
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In contrast to the previous cases wy may have mirrors without cusps.

EXAMPLE. N = 2. The following diagram shows a fundamental domain for
To(2) divided into two by the fixed axis |z|* =  of Ws.

y

=1+
2

N

(7

— 2
1 _%Z_

vz

L
2 2

X

0

(X7

There are two cusps at 0 and oo and one orbit of elliptic fixed points of
period 2 at (£1+7)/2. Thus the mirror of W, has no cusps (and one branch
point corresponding to the elliptic fixed points). More generally we have
the following simple result.

THEOREM 6. wy fixes a cusp on a mirror if and only if N is a perfect
square.

Proo¥. If w, fixes a cusp then for some € QU {0} and T € T'o(N),
Wy :z — T(z). If

T= (c(]lV 2) (ad — beN = 1)

then S = WnT fixes z. Now S reverses orientation. If it were a glide
reflection then S? would be a hyperbolic element of the modular group
fixing a point of QU {oo} which is impossible so that S is a reflection. As

cN d
§= (aN bN)

we conclude that b+ ¢ = 0. As S fixes ¢, aNz? + 2bNz — d = 0. The
discriminant is 4b*N? + 4adN = 4N which must be a perfect square and
the result follows. Conversely, if N = n? then Wy fixes 2. 11

In (1], the first author obtained the following result (c.f. [10]). First we
need some notation. Let A be the number of solutions of 2 = —1 mod n. If
solutions exist then A = 2°%7 where ¢ is the number of odd prime divisors
of nand 7 =0, 1, 2 according as 4 { n, 4||n or 8|n. ([8] p.65). We also let
k be the order of 4 in Uy, the group of units mod N.
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THEOREM 7. Let N = n?. Then

(i) If n is odd then @, has A boundary components containing k cusps and

dn) A

o7 > boundary components with 2k cusps.

(ii) If n is even then w, has A boundary components with 1 cusp and
¢(n)

9

Z

A
+5 boundary components with 2 cusps.
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Lifting group actions to covering spaces

M. A. Armstrong

To Murray Macbeath on the occasion of his retirement

Several authors (Bredon [2]; Conner and Raymond [3]; Gottlieb [4];
Rhodes [5]) have considered the following question. Given an action of
a topological group G on a space X, together with a covering space Xu
of X, when does this action lift to an action of G on Xu? We propose a
systematic approach which unifies and extends previous results. In partic-
ular we avoid unnecessary local restrictions on G and X, and we verify the
continuity of the lifted actions.

Our first task is to fix some notation and terminology. Let X be a path
connected, locally path connected space with a chosen base point p, and
let X 51 denote the covering space of X which corresponds to the subgroup
H of m(X,p). We shall assume throughout that G is a topological group
which acts in a continuous fashion as a group of homeomorphisms of X.

Suppose G also acts on a space Z, and that f : Z — X is an equivariant
map which sends the point g of Z to p. We say that H is (f, G) —invariant
providing the homotopy class

(F()-g9(a).-f(x71))

belongs to H for every group element ¢ in G, loop « based at p in X, and
path 74 which joins ¢ to g(¢) in Z. (When Z = X and f is the identity map,
we have a “G-invariant subgroup” in the sense of [1].)
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Our main results are as follows.

THEOREM A. The action of G on X lifts to an action of G on XH if and
only if there is a path connected, locally path connected space Z, an action
of G on Z, and a based equivariant map f : Z,{q} — X, {p} such that:

(1) H is (f, G)-invariant, and
(i) fu (m(Z,q)) € H.

THEOREM B. Let fi : Z,,{a1} — X,{p}, fo: Z2,{q2} — X, {p} be
based equivariant maps for which H is (f;,G) — invariant and contains
fis(m(Z,¢)), ¢=1,2. Then fi and f, lead to the same lift of G to X'H
if and only if given g € G, and paths v; joining ¢; to g(¢:) in Z;, i=1,2, the
loop f1(m1)-f2(7v2)~! always represents an element of H.

Before proving the theorems we list some corollaries.

COROLLARY 1. The action of G lifts to Xy if some point p of X is fixed by
every element of G, and H is invariant under the automorphisms of (X, p)
induced by elements of G.

ProoF. Take Z = {p}, and f to be the inclusion of {p} in X. I

COROLLARY 2. The action of G lifts to Xy if G is path connected and
wy (m1(G,e)) C H, where w : G — X is the evaluation map w(g) = ¢g(p). In
this case the lifted action is unique.

ProoF. Take Z = G, q to be the identity element, the group action as left
translation, and f to be the evaluation map. Notice that H is automatically
(w, G)- invariant. If v is a path which joins e to ¢ in G, and if « is a loop
based at p in X, the loops

fr)vt)e).f(vh), 0<t<1

provide a homotopy from « to f(v).g(a).f(y~"). Therefore the latter loop
represents an element of H whenever « does so. Here 7; is the path from e
to (1) defined by v,(s) = v(ts), 0 < s < 1.

Suppose now we have a lift associated with a map f: Z — X where H
is (f, G)-invariant and contains f,(m(Z,q)). Given g € G, let v be a path
which joins e to ¢ in G, let ¢ join ¢q to ¢g(q) in Z, and let § be the path
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(again from ¢ to g(g)) defined by B(s) = v(s)(q), 0 < s < 1. The loop
f(Bo~1) represents an element of H and

FB(s) = fA(s)(q) = v(s)f(q) =v(s)(p) = wr(s), 0<s <1,

Therefore w(y)f(o)™! represents an element of H. Theorem B now shows
us that the lifts determined by w : G — X and f: Z — X agree. Hence
the lifted action is in this case unique. |

COROLLARY 3. The action of G lifts in a unique manner to every covering
space of X when G is simply connected.

ProoF. This is a special case of Corollary 2. I

COROLLARY 4. The action of G lifts in a unique manner to every covering
space of X if G is path connected and (X, p) has a trivial centre.

ProoF. This follows from Corollary 2 because the image of w, is always
contained in the centre of m;(X,p). I

COROLLARY 5. Let G be a discrete group, let S be a set of generators for
G and let I'(G, S) denote the corresponding Cayley graph. The action of
G lifts to Xy if there is an equivariant extension € : ['(G,S) — X of the
evaluation map w such that

(i) H is (, G)-invariant, and
(i) Q. (m(T,e)) C H.

Proor. Take Z = T(G,S), ¢ = e and f = Q, the action of G on T’ being
induced by left translation. I

PROOF OF THEOREM A. The necessity of our conditions is clear. When
the action does lift, we need only take Z = Xy, with the given action, and
f to be the natural projection from Xg to X.

Now suppose the hypotheses of the theorem are satisfied. Choose a base
point § in XH which projects to p. Given Z in XH and ¢ in G, join p to
by a path & in XH, writing o for its projection into X, and join ¢ to ¢(q)
by a path v in Z. Form the composite path f(v)g(«) in X, and lift it to a
path in )?H which begins at p. The end point of this lifted path is the point
9(z) of Xu.
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If B8 also joins p to # in _X;H, and o joins ¢ to g(¢) in Z, then

(F(M9(@).(F(9)g(B) ") =(f(7)-9(aB™").f(s7))
=(f(7)-9(aB™V).f(Y I F(ya™h)).

The first part of this product lies in H because af~! represents an element
of H, and H is (f,G)-invariant. The second part also belongs to H since
fu(m1(Z,q)) € H. Therefore f(v)g(a).(f(o)g(B))"! represents an element
of H, and consequently lifts to a loop based at p in Xp. So the lifts of
f(7)9(a) and f(0)g(B) must have the same end point, and give the same
value for ¢(Z). We shall say that paths such as f(y)g(«) and f(o)g(fB)
represent the point ¢(&) of _X;H)

This procedure does give an action of G on XH. If e is the identity
element of G, take v to be the constant path at ¢, when f(¥) is the con-
stant path at p and f(v)e(«) is homotopic to « keeping p fixed. Therefore
e(Z) = &. Given g1,92 € G, join ¢ to ¢1(g) by 71 and to g2(g) by 72, so
that f(v1)91(«) represents ¢1(Z) and f(v2)g2(«) represents go(&). Then by
construction f(v2)g2(f(71)g1(«)) represents g2(¢1(Z)) and, since y292(11)

joins g to ¢g291(q) in Z, we see that f(y292(71))9291(«) represents g2¢1(Z).
Now

f(r292(m))g291(a) =f(v2)92(f(11))9291(«) (because f is equivariant)
=f(72)92(f(m)o1(@)).

Therefore g2¢1(Z) = ¢2(¢1(Z)), as required.

It only remains to check the continuity of this action. We must verify
that the function
GxX H — ‘YH

defined by (g,: &) — ¢(&) is continuous. Begin with a group element g € G,
a point T, € Xy and a neighbourhood W of go(Fo) In XH Without loss of
generality we may insist that W project to a canonical neighbourhood W of
go(zo) in X. That is to say W is an open, path connected neighbourhood
of go(zg), and the collection of points “above it” in X i consists of palrwise
disjoint open sets each of which projects homeomorphically onto W.

In what follows we make repeated use of the continuity of the given action
of G on X. As usual we represent the point ¢go(Zo) by a path f(7)go()
in X. Cover go(a) by a finite number of canonical neighbourhoods which
include W and a canonical neighbourhood of ¢o(p). Then break up « as
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a composite path o = ajas ... a; so that each go(a;) is contained inside
one of these canonical neighbourhoods, say go(a:) C Vi, 1 < 1 <k,
where V; is the chosen canonical neighbourhood of go(p) and Vi, = W.
Of course V;, .... , Vi need not be distinct. Now choose a path connected
neighbourhood N of go(¢) in f~!(V}), a canonical neighbourhood V of z,
in X, and a neighbourhood U of ¢y in G, which are small enough so that:

g(g) e N if geU;
g(a;) C Vi, 1 <i<k, whenever g € U;
g(z)eW if geUand z € V.

If V is the neighbourhood of Z, which projects homeomorphically onto V/,
we shall show that ¢(&) € 1% providedg € U and & € V thereby completmg
the argument. Suppose then that ¢ belongs to U, and that Z lies in V. Join
go(q) to g(q) by a path 6 in N, and let § be a path which joins z to z
in V. Then the path f(v6)g(af) represents the point ¢(Z). Now f(§) is
contained in V;, and ¢g(«;) always lies in the same canonical neighbourhood
Vi as go(e;). Therefore our lift of f(~6)g(«) must end in W. Since g(B) is
contained in W, the lift of f(v6)g(aB) also ends in W, as required. I

ProoF oF THEOREM B. With the usual notation, the lifts of fi(y1)g(«)
and f2(42)¢g(a) which begin at p have the same end point precisely when
the loop fi1(m1)g(a)[f2(72)g9(a)]™! represents an element of H. B

One can of course compare lifts which come from different maps. To this
end suppose that f; : Z;,¢1 — X,p and fo: Z5,q0 — X,p satisfy the
hypotheses of Theorem B. Given i € XH and ¢ € G we assume, as usual,
that +; joins ¢; to ¢(¢:) in Z; for 1 = 1,2 and that « is the projection into X
of a path which connects p to Z in Xn. Lifting fi(71)g9(«) and fa(y2)g(a)
into Xp and taking the end points of these paths gives two points, say
(92)1 and (g&), respectively. If the given covering is regular there will be a
deck transformation dy € m(X,p)/H such that dy(¢Z)1 = (¢&)2. The same
covering transformation d, is obtained whichever point # we start from, and
the correspondence ¢ — d; is a homomorphism from G to m,(X,p)/H. We
therefore have the following result.

THEOREM C. With the notation established above, and under the assump-
tion that Xp is a regular covering space, there is a homomorphism d :
G — m(X,p)/H such that (g&); = dy(g&), for every point & € Xy and
every group element g € G. 11
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COROLLARY 6. Let Xy be a regular covering space of X. If the action of
G lifts to X i, and if the only homomorphism from G to m(X,p)/H is the
trivial homomorphism, then the lifted action is unique. i
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A combinatorial approach to the symmetries
of M and M-1 Riemann surfaces

E. Byjalance and A. F. Costa

To A. M. Macbeath on the occasion of his retirement

1. Introduction

Let X be a compact Riemann surface of genus g. A symmetry of X is an
anticonformal involution T': X — X. The topological nature of a symmetry
T is determined by properties of its fixed point set F(T). F(T) consists of k
disjoint Jordan curves, where 0 < k < ¢+ 1 (Harnack’s theorem). X — F(T)
has either one or two components. It consists of one component if X /(T)
is non-orientable and two components if X/(T) is orientable. Let T be a
symmetry of X and suppose that in F(T) there are & disjoint Jordan curves,
then we shall say (see [4]) that the species of T is +k if X — F(T') has two
components and —k if X — F(T) has one component.

We shall say that a Riemann surface X is an M (respectively M — 1)
Riemann surface if it admits a symmetry with g+1 fixed curves (respectively
g fixed curves). S. M. Natanzon in [9] and [10] announced some properties
about the topological nature of the symmetries of M and M — 1 Riemann
surfaces and, in the hyperelliptic case, the classification of such symmetries
up to conjugation in the automorphism group. Later, in [11] and [12] the
above results were proved by topological techniques. In this paper we give

Partially supported by DGICYT PB89-0201 and SCIENCE Program CEE 910021
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a proof of the results about the topological nature of the symmetries in
[9] and [10] by the combinatorial theory of non-euclidean crystallographic
groups, introduced by A.M. Macbeath in the 60's; in this way we obtain
some improvements of Natanzon’s work in the non-hyperelliptic case. The
classification of symmetries up to conjugation in the hyperelliptic case can
also be obtained by our techniques. By our methods we can also study the
symmetries of Riemann surfaces with less than ¢ fixed curves.

The functorial correspondence between the symmetries of Riemann sur-
faces and the real forms of algebraic complex curves is well-known (see [1]).
In this way all the results in this paper can be translated into the language
of real algebraic geometry used by Natanzon in his work.

2. Preliminaries

Let £ denote the group of all conformal and anticonformal automor-
phisms of the upper-half complex plane D and let £ denote the subgroup
of index 2 consisting of conformal automorphisms. A non-euclidean crystal-
lographic group (or NEC group) is a discrete subgroup A of £ with compact
quotient space D/A (see [8] and [14]). An NEC group contained in L1 is
called a Fuchstan group, otherwise it is called a proper NEC group. The
algebraic and geometric structure of a NEC group is completely determined
by its signature, which is of the form:

(gv:tv [mh"-7mr];{(nll7'-'7n131)7---7(nk17---vnksk)})

If A has the above signature then D/A is a compact surface of genus g with
k holes; it is orientable if the + sign is used and non-orientable if the —
sign is used. The integers m,,...,m, are called the ordinary periods and
represent the branching indices over interior points of D/A for the natural
projection from D to D/A. The k brackets (n;,...,n:,) are the period
cycles and the integers n;y,...,n,s,, which are called link periods, represent
the branching indices around the i** hole.

A group A with this signature has a presentation with the following
generators:

(%) z;, 1=1,...,7

(22) Cij, t=1,...,kand j=0,...,s;
(e%) €, t=1,...,k

(tv) a;, b;, i1=1,...,9 (if the sign is +)

d;, 1=1,...,¢ (if the sign is —)
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subject to the relations,

(1) g™t =1, i=1,...,r
(2) Cis; =€,'_lcz'0€i, i1=1,...,k
(3) clz,j—l :c?jz(ciyj—lcij)nij_l7 i=17"'7kandj=17"'7si

(4) z1...2re ...ekalblal_lbl_l ...agbgag_lbg_l =1 if the signis +

xl...xrel...ekd%...d§=1 if the signis — .

Every NEC group has a fundamental region whose hyperbolic area de-
pends only on the algebraic structure of the group, and for a group with
the above signature the area is given by the following formulae (see [13)):

r k8
1 1 . 1
p(A) =2 ag+k—2+§(1——m,)+;§ 2(1——”,)
i=1 ! < R

=1 j=0
where o = 1 if the sign is — and a = 2 if the sign is +.

Now let X be a compact Riemann surface of genus ¢ > 1. Then there
is a Fuchsian group I'" with signature (g; +;[-];{-}) such that X = D/T. If
G is a group of automorphisms of X (including orientation-reversing au-
tomorphisms) then there exists a NEC group A such that I' is a normal
subgroup of A and G ~ A/T". In the case that G is the group generated by
a symmetry of species +& then the NEC group A has signature

(3(g+ 1= k) 5065, 00D
If G is generated by a symmetry of species —k then A has signature

(9+1—F;-; [']; {(')7 k7 (')})

(see [4]). As a consequence of this result we have that if X is a Riemann
surface that has a symmetry T of species +k (respectively —k) then X/(T)
is an orientable (respectively non-orientable) Klein surface with & boundary
components. Let us remark that if T is a symmetry with ¢ + 1 fixed curves
then X /(T) is orientable and then the species of T is +(¢ + 1) and if T has
g fixed curves then X/(T) is non-orientable and therefore the species is —g.

The following result of [2] will be used in the next section:

2.1. If T) and T, are non-commuting symmetries of X, and k; and k, are
the number of fixed curves of Ty and T3 respectively, then k; + k; < ¢ + 3.
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Also we will use the following remark proved in [3] and [6]:

2.2.  If X is a hyperelliptic orientable Klein surface with non-empty
boundary and topological genus ¢ > 0, then X has one or two boundary
components,

3. Results

We begin by stating an easy group-theoretical lemma that is used in the
proof of theorem 3.3:

LEMMA 3.1. Let Dy be a dihedral group with presentation

Dy = (8,3, : 32 = 3% = (,8,)N = 1).
(a) If N is a multiple of 2 not a multiple of 4 there are ®] and ®, in Dy
conjugate to ®; and &, respectively such that (|, ®%) is isomorphic to D,.

(b) If N is a multiple of 4 but not of 8 there are ®] and ¥} in Dy conjugate
to ®, and ®, respectively such that (®],®}) is isomorphic to Dy, and there
are &Y, ®1’ conjugates of ®; such that (®},®}"} is isomorphic to D.

(c¢) If N is a multiple of 8 there are ®, ®} conjugate to ®, such that (&}, ®Y)
is isomorphic to Dy.

Let X be a Riemann surface of genus ¢ > 1 and assume that X admits a
symmetry &, of species +(g +1) or —g, i. e. X isan M or M — 1 Riemann
surface. If ®, is another symmetry of X, in the following lemma we shall
find the possible species of ®; in the case where the order of ®,®, is 2 or 4.

LEMMA 3.2. Let X be a Riemann surface of genus ¢ > 1 and ®,, %, two
symmetries of X such that the order of ®,®, is N. Then:

(1) If the species of ®, is +(g + 1) then:

(i) If N = 2 the species of ®; is either 0, or g+1—2¢ where 0 <t < -q%
if ¢ is even, or 42 if g is odd.

(ii) If N = 4 the species of ®5 is —1.
(2) If the species of ®2 Is —g then:

(iii) If N = 2 the species of ®, is either —(g — 2t) where 0 < ¢t < ‘%, or
—(g+1—2t) where 0 < t < -q%, or —1.

(iv) If N = 4 the species of &3 is —2.
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PROOF. Assume X = D/T, then I has signature (g; +;[-]; {-}).

CASE 1: ®, has species +(g + 1). Then by §2 there is a NEC group such
that [I'; : I') = 2 and I’y has signature:

(3.1.1) (0545 [5G, 25,60

If N = 2 there is a NEC group I'* such that [I'™* : T'y] = 2 and IT™*/T is

isomorphic to (®;, ®;). Thus by [5] and the Riemann-Hurwitz formulae I'*
has one of the following signatures:

(3.12) 05+ [ ()10 (), (2, 7

»2)})

with 2t + 2 =g +1

(3.1.3) (0545 [ {(-), +3/2 (1)})  with 2 a divisor of g + 1

(3.1.4) (15— [ {(-), /2 ()})  with 2 a divisor of g + 1

3.1.5 0; +;[2,2]; {(-), WH/2 (- with 2 a divisor of g + 1
(

(3.1.6) (0; 45 [2]; {(-), #/%,(-)}) with 2 a divisor of g.

Now if I'; is a NEC group such that I';/T" is isomorphic to (®2), then
we have the following diagram of normal subgroups:

-
2/ \2
r, |4 T,
2\ /2

and so there is an epimorphism 6 : I'* — (®,,®;) such that 67'((®,)) =
Iy, 67'({®;)) =T, and ker =T. Since the signatures of I', T'; and I'*
are known then using [5] and [7] we can determine the signature of I'y:

—If the signature of I'y is (3.1.2), then I'; has signature
+1
(9243 [ {(), %, (-)}), wherew =g+1-2t,0<t<? -

Z

—If the signature of ' is (3.1.3) then I'; has signature (g3;+;[-]; {(-),(-)})-

—If the signature of I'y is (3.1.4) then T'; has signature (g¢%;—;[-];{-})-

—If the signature of ' is (3.1.5) or (3.1.6) then I'; has signature
(92" =i [l {-D)-
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It follows that the species of &5 is ¢ + 1 —2¢ where 0 < ¢ < -q%, in the

first case, +2 in the second case and 0 in the other; note that ¢ must be
odd in the cases (3.1.3), (3.1.4) and (3.1.5).

If N = 4 then {®,,®2) is isomorphic to Dy. The symmetries ®; and
®2®, P, have the same species +(g + 1) because they are conjugate. Then
there is a NEC group I'* of signature (0; +; [-]; {(2, 292,2)}) such that '*/T
is (®,,P,®,®2). Now there is a I such that IV /T is (®,, ®,) isomorphic to
Dy, then [I : T*] = 2 and by [5] [ has signature (0; +; [-}; {(4,2,.9.,2,4)})
Hence the only possible epimorphism ¢ : I — IV /T = D, is the following:

9'(01) = &, 9’(02) =&, 9'(03) = $,9,9,, 9'(04) = &y,
6’(65) = ¢2¢1¢2, feey 0'(c9+2) = @1 or Qgélég, 0’(cg+3) = @2.

Then by [5] and [7] the signatures of (6') 7' ({®2, &1 $2®1)) and (8')7!({®2))
are (0;+;(2,.9.,2];{(2,2)}) and (g2;—;[],{(-)}) respectively, so the
species of &5 is —1.

CASE 2: &, is a symmetry of species —g. In this case there is a NEC group
I'; such that [’y : T) = 2 and I'y has signature (1;—;[-];{(-),.4.,(9)})-

As in the first case, if N = 2 then I'* must have one of the following
signatures:

(0;+§[2]3{(')"?'7(')7(2"T'v2)}) 2t
(0;+;['];{(')7'?'7(')7(27'?'v2)}) 2t +
(0 +; [ {(=), WF2, (=),

Then T3 has signature (go; —; [; {(-), /%, (-)}) or (g5; —;[); {(-)}). Hence
the possible species of ®; are: —(g —2t) with 0 <t < £, or —(g — 2t + 1)
with 0 < t < 221, or —1.

=g

[N ]

I

If N = 4 then I" has the signature (0; +;[-]; {(2,4,2,97},2,4)}) and the
only possible epimorphism §' : IV — I'/T = D, is given by

0'(c1) = @2, 6’(62) = Qlégél, 0’(63) = @1, 6’(64) = Qgélég, feey
0'(cg+1) = @2@1@2 or @1, 0'(cg+2) = @1 or @2@1@2, 0'(c9+3) = @2.
Then the signature of 8’71 ((®2,®,®.®,)) is (0;+;(2,971,2);{(2,2,2,2)})

and the signature of 8'~'({®,)) is (¢'; —; [-]; {(-)(-)}) so that the species of
@2 is—2. 1
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First we establish our main result in the case of M Riemann surfaces:

THEOREM 3.3. Let X be a Riemann surface of genus ¢ > 1 having a
symmetry ®, that fixes ¢ + 1 curves.

(a) If X is hyperelliptic, then:

(1} X has exactly two symmetries of species +(g + 1) and the product
of such symmetries is the hyperelliptic involution.

(ii) If ®; is another symmetry of X then
—if ¢ is even, &, has species —1 or 0 or +1
—if g is odd, ®, has species —1 or 0 or +2.

(b) If X is not hyperelliptic, then:

(i} X has only a symmetry with species +(g + 1) which is central in the
automorphism group of X.

(ii) If &, is another symmetry of X then
—if g is even, ®, has species Oor +(g+1—2¢),0< ¢ < -q%
—if ¢ is odd, ®; has species O or +2 or +(¢+1—2¢), 0 < g < -q%

All the species of ® in the two cases are possible.

PROOF. Assume that X is D/T.

(a) (i) If h is the hyperelliptic involution of X then & = @, is another
symmetry of X. The product ®,®' = & has order two and if I'y is such
that I'y/T = (k) then the signature of T'; is (0; +;[2,29+2,2];{-}). f I* is
such that T'*/T = (®,,®') by the proof of lemma 3.2 the signature of I'*
is (0; +; [); {(2,29%2,2)}). If I is such that [V/T" = (®') then the signature
of I by [12] and [13] must be (0;+; [-]; {(-),4t1,(-)}) and ®' is a symmetry
with species +(g + 1).

If " # &, is a symmetry of species +(g + 1) then by 2.1 &, and ®"
commute and ®;®" has order two. If I'* is such that I'*/T" = (&,,%")
then T* has signature (0;+;[-];{(2,2912,2)}) and if [y, ,¢n is such that
Fg,+ /T = (®,9") then T's,¢» has signature (0;+;([2,29+2 2]) implying
that ®,®" is the hyperelliptic involution. Since the hyperelliptic involution
is unique, ;9" = ®,®' and ®" = &'.

(a) (i) The order of ;%2 cannot be a multiple of 8 by lemma 3.1(c) and
(a)(i). Since ®, does not have the same species as @, then the order of
$, P, 1s 2 or a multiple of 4. Applying lemma 3.1 we can suppose that this
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order is 4 or 2. If we assume that ®,®, has order 4 then by lemma 3.2
the species of ®5 is —1. If the order of ®;®; is 2 then by 2.2 and 3.2 the
possible species for ®, are 0, —1 and +1 if ¢ is even and +2 if ¢ is odd.

The existence of Riemann surfaces with involutions having the above
species is shown by constructing smooth epimorphisms

GIFI—)ZQ+ZQ+ZQE(¢1,¢2,¢I> or 02F1—>D42(¢1,¢2>,

such that 67!'(®,) gives the involution that we want, §7'(®,) gives the
maximal symmetry and §7!(®, ') is the hyperelliptic involution.

For example, in order to have a hyperelliptic Riemann surface with a
symmetry of species —1 we take a NEC group with signature
(0; +;[-); {(4,2,.9.,2,4)}) and let 6 be the epimorphism in the proof of
lemma 3.2 (1)(ii), then D/ker 8 is a hyperelliptic surface with 671(®2) a
symmetry of species —1.

(b) (i) If & is a maximal symmetry different from &, then by 2.1, &, and
&’ commute and then ®,®’ has order two. Now by the proof of lemma 3.2,
®,®’ must be the hyperelliptic involution, which is a contradiction.

(b) (ii) By lemma 3.1 and (b)(i), ®;®, must have order two. Now part (ii)
is a consequence of lemma 3.2.

To obtain Riemann surfaces of the above type we proceed as in case (a).

THEOREM 3.4. Let X be a Riemann surface of genus ¢ > 2 with a symimetry
®, of species —g. Then X has no symmetry with species +s or 0., and

(a) If X is hyperelliptic, then:

(i) X has exactly two —g symmetries and their product is the hyperel-
liptic involution.

(ii) If ®, is a symmetry with species different from —g then &, has species
either —2 or —1 and both cases occur.

(b) If X is not hyperelliptic, then:

(i) X has only a —g symmetry which is central in the automorphism
group of X.

(ii) If &, is the other symmetry of X the species of ®; must be —s where
0 < s < ¢, and every such species occurs.
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ProOF. The fact that X cannot have symmetries with species 0 or +s is a
consequence of lemma 3.1 and lemma 3.2.

(a) (i) This can be proved in the same way as (a)(i) of theorem 3.3.

(a) (ii) By lemma 3.1 we need consider only the cases where ®,®; has
order 2 or 4. The order 4 case is completely studied in lemma 3.2.

Assume that ®,®, has order 2. By (a)(i) there exist groups I'; with
signature (1; —; [-]; {(-),.4.,(-)}), T’ withsignature (1; —; [-]; {(-),.2.,(-)}),
' with signature (¢1;—;[-]; {(-),.%,(-)}) and T* with signature
(0;+;[2];{(2, 25.,2)}) (by the proof of lemma 3.2), and I'™*/T" = (&, ¥’),
FI/F = (¢1>7 FI/F = ((b>’ F?/F = ((b2>

Since ®,®, has order two, (®;,®’, ®;) is isomorphic to Z; + Z5 + Z.
If T** is such that I'™*/T" = (®,,®',®;), by [5] and [7], the signature
of T** must be (0;+;[-); {(2,97%,2)}). If I's < I'** is such that ['}/T =
(®1, ®2) the signature of I'} is (0; +; [-]; {(-), 9/2, (-),(2,2)}) if ¢ is even and
(0; +;[2); {(-), 9712 (-),(2,2)}) if ¢ is 0dd, and in any case if the signature
of T'y is (g2; —; [-]; {(-)}) then the species of &, is —1.

The following epimorphisms show that the above symmetry occurs for
every genus. 8 : T** - T**/T"' ~ Z, + Z, + Z, is given by:

8(co) = B2, 8(c1) = ®1, O(c2) = @', b(c3) = &4, ...,0(cy) = ¥ or ¥y,
O(cgt1) = 1 or &', O(cgq2) = 218" ®2, H(cg43) = Bo.

The proof of part (b) is similar to the proof of theorem 3.3. n

REMARK 3.5. By lemma 3.2(iv) we have an example for which the results
of theorem 3.4 are not true without the assumption ¢ > 2. Theorem 3.4
(b)(i1) gives us, for ¢ = 2, a Riemann surface with automorphisms group
isomorphic to D, having four symmetries of species —2.
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Inequalities for Pell equations and Fuchsian groups

J. H. H. Chalk

Dedicated to Murray Macbeath on the occasion of his retirement

Introduction

Let S denote the solution-set of a diophantine equation of the form
(1) Dy (t? + Ps?) — Dy(u® + Pv®) = n,
where Dy, Dy, P are positive integers and n(# 0) is an integer assumed to
be representable by the quaternary quadratic form on the left of (1) with

(t,s,u,v) € Z*. Some insight into the structure of S will appear from
knowledge of the group structure of the solution-set of a special case of (1):

(2) (t* + Ps?) — D(u? + Pv®) = +1,

if we take D = Dy D,. More generally, we know from the classical theory of
indefinite quadratic forms in > 4 variables that

(i) an integer n is representable over Z if, and only if, it is representable
over £, for all primes p

(ii) if n is so representable, then n is representable infinitely often (in
particular, card S = o0).

If we introduce the variables z,y in Z[i\/]_J], by z = t+i\/1_35, y = u+ivVPo
then (1) and (2) become

(3) D2z — Dyyy = n,
(4) 2z — Dyy =1
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respectively; the forms on the left being binary Hermitian.
We shall consider three objectives for S:

I. An effective bound to the ‘size’ of a nontrivial solution of (4), (i.e. with
y #0).

II. An effective bound to the size of a solution of (3) using
(a) a group of Z[iv/P]-automorphs of Dyz& — D2y,
(b) number-theoretic techniques.

ITI. As the group in II(a) is Fuchsian and the bound obtained depends upon
the “diameter” of its fundamental region, we conclude with some re-
marks on the spectral theory of Selberg with reference to Peter Buser’s
lower bound for the smallest eigenvalue, also dependent on a ”diameter”
for the closed geodesics on the corresponding Riemann surface.

Section I

For the classical Pell equation t2 — Du? = 1, where D > 0 is a non-square
integer, I. Schur [12] used the Kronecker form of the class-number formula

h(D)loge(D) = VD Z (%) %,
1<n<oo

where (D) = t + uv/D and h(D) denotes the number of classes of properly
primitive indefinite binary quadratic forms az? 4+ bzy + cy® of determinant
D = b* — 4ac to show that

loglog e(D) < 3 log D + loglog D.

This estimate is close to being best-possible for m large and D of the form
22m+1 (this idea was extended by E. Landau [11] to units of algebraic
number-fields).

For the Pellian equation (4), observe that

rﬂp):{(; d{); v € Z[ivVP), AX_D,/17=1}

is a group which preserves the form f;, say, in (4) under the mappings

1
(;) :»,(Z,>, for all v € T(P).
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The corresponding group fl(P) of actions in the complex z-plane

© O
vz+ A

is, in fact, Fuchsian of the first kind with principal circle |z|> = D. Note
that the Dirichlet method of defining a fundamental region F, in |z| € D,
by the use of the isometric circles |7z + A\| = 1 of fl(P), introduces the
“small” solutions of A\ — Dy = 1 (and, in fact, a set of generators), since
the isometric circles have radius |v|™! and are orthogonal to the principal
circle. Then, by simple geometric considerations of F; and a class-number
formula (due to Humbert [9]) analogous to that of Schur above, we have the
following estimate (cf. [3]).

THEOREM 1. There exist z,y in Z[iv/P] such that 27 — Dyy = 1 with

(M) 076\/:_6—:E<1+DPH[1+(_TP>HH[1+(2>1}’

4 9/ 4
where p, ¢ are odd primes with p|D, q|P, provided that

(8) (D,P)=1o0r2, P#0mod4, D #0mod4.

REMARK 1. The restrictions in (8) arise from the limitations in the class-
number formula (10) below. They can be removed at the expense of a more
complicated formula than (7), but for this it is more efficient to regard
% — Dyy = n(7) = 77 as the norm of a proper unit of an order of a rational
indefinite quaternion algebra and extend the work of M. Eichler [6] on local
methods (for details, see [4]).

We outline a proof of Theorem 1 for the case P = 1. The formula for
the non-Euclidean area o(F;) of F; has the shape

(9) o(F) = 4D/f1_2(z,1) dzdy

and the analogous class-number formula (G. Humbert [9]) for the h classes
of properly primitive binary Hermitian forms is

w 3 [ fenea=7 1 (23]

1<j<h p|D,p#2 p/P
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where the forms f; (1 < j < h) represent the k classes and F; the cor-
responding fundamental region for the Z[¢]-automorphs of f;. Since each
term in the sum on the left is > 0, we have

Ry A NG

by (9). Now, using Euclidean geometry, the largest circular disc D with
centre z = 0 and contained in F; has radius = (|z|—1)|y|~!, where we have
T — Dyy =1 and |y| is minimal. Since o(F;) > o(D), we obtain

(12) O<|z|-1<n'o(F)<D H [1+(—_1> 1]’
pID,p#2 p/p

as required.

REMARK 2. For P = 1, we note that if D = a®> +b* (a,b € Z) then, by
inspection of (2), we have a non-trivial solution with

(13) (t,s,u,v) =(1,D,a,b),
which is roughly comparable in size to that in (12), for D large.

Section II(a)

The properties of the group I';(P) with D = D, D, lead to an estimate
for (3) based upon the properties of our fundamental region for I'; (P). More
precisely, with z,y, z¢,y0, X, Y € Z[z\/I_J] and conjugates denoted by ', note
that

Dll' D1D2y A D1D2y0 _ D1X D1D2Y
y' Dz’ Yo zg LY D, X" /)

where
(14) X = 2z + Dayyp, Y =25y + Dizyo

Thus (a) (Dyzz’ — D2yy')(wozy — Dyoyy) = D1 X X' — D YY!
(b)(Dyz,y) — (D1X,Y), under the action of v € I'(P), where

zo D
’r=( ; %l°>-
Yo To
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(¢) In particular, if w = D, g, W=D %, then
_ zow+ Dyg
T yhw + zh

(15)

Note that, by the interchange (z,y) — (y,2z), (D1, D2) — (D2, D), there
is no loss of generality if we take n < 0. By (c) we see that I';(P) acts
on the disk |z| < v/D. Suppose now that T';(P) is hyperbolic so that we
may choose a fundamental region F for I'y(P), all of whose points belong
to a smaller disk |z| < p < V/D, in which case we can ensure that the point
w = Dy /y is transformed, by a suitable element v € T'y(P) into a point
W =D,X/Y € F, and so

D, X
W= |5~ <o
Since D, |X|? — D2|[Y|? = —|n|,
Din
(16) max[D, |X|2,D2|Y|2] < D _l /l)g

in terms of p, which we can view as a crude bound for the diameter of the
region F.

Section II(b)

Applications of the “circle method” (often referred to as the ‘Hardy-
Littlewood’ method for their pioneering work on diagonal quadratic forms)
have, in recent years (cf. [7], [13], [1]) produced effective estimates; the
latest of which implies that, when solvable, there is a solution of (1) with

(17) max[[¢], |s], |ul, [v]] <. (Dy D2P)**¢[n|3 5.

This is, in fact, a corollary to an asymptotic formula for the number of
solutions, when the variables are confined to a large “box” centred at the
origin. For P = 1, an elementary method due to Hooley (cf. [5]) produced
the estimate

(18) 2 + 5% <. (D1D2)**e|n|?,
valid for all representable n not too large compared with D, and D-, e.g.

(19) n &, min(D;, Dy)(D; D,)%¢
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would suffice. As before this is a corollary to an asymptotic formula for
the numbers of solutions. For P > 1, Hooley’s method works if the class-

number &(—P) of properly primitive binary quadratic forms of discriminant
— P satisfies h(—P) = 1. Then, we obtain

(20) t? + Ps® < (D1 Do P)** ¢ |n|*,

provided that n is not too large compared with DyD;P. For P > 1,
h(—P) > 1, a weaker asymptotic formula is under investigation.

Section III

Suppose now that ' is a general hyperbolic Fuchsian group which we
may suppose (after a normalization) to act on the unit disk & = {z € C:
|z| < 1}. Let F denote a Dirichlet fundamental region for T; it is, in fact
a finite-sided non-Euclidean polygon, the boundary consisting of pairs of
equivalent oppositely oriented sides £ and £.,-1 which correspond to one
another under v € I'. The invariant measures on U/ are

2
(21) du(z) = r)l |2|dz| and dA(z) = (—-o—l—l-i) dzdy (z =z +iy).

Now, for any function f € C%(F), the invariant form of Green’s identity has
the form

22 DfdA(z dA(2) = dz
(22) [ o1 ()+/TfD(f) () /Mfo ,

2 2
where Df = (l—i)l”l—?) |V#|* and Df = (I—_JLP> Af,

a2 d? .

are the Laplace-Beltrami operators. Note that Vfdz = %5 ds 1s invariant
under automorphisms of U/. In particular, if f is automorphic under the
action of I, then

(23) /Mfodz=o,

by the pairings of the sides of F. More generally, there is a ‘nice’ spectral
theory in the Hilbert space Ly(I'\{f) furnished with the inner product (cf.
(6] p. 1-12)

(24) (fi,f2) = /f f1(2)f2(2) dA(2).
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The invariant Laplacian D has a discrete spectrum
() 0=X<Ah<AhL..< L (A — +00 as n — o0)

and an orthonormal basis {¢,} of real-valued eigenfunctions which satisfy

(i5) Dén+dndn=0, VneN, ¢,€C>.
(ii1) Ly(T\U)= P Clgn)-
0<n<o

Suppose now that f is a real-valued eigenfunction belonging to A. Then,
by (ii),
(-Df. )= [(-DPFaae) =2 [ 1 dac)

and by Green’s identity, using (23),

(-Df.f) = [ DrdaE) = [ lered f1* dady.

Hence

2
(25) A= /f(fw2 + fy?) dacdy//yf2 (ﬁ) dzdy.

This is a non-Euclidean form of the classical Rayleigh Quotient and, so far
as I know, has not been fully exploited to achieve lower bounds for the
eigenvalues A (however, see [10],12.19 and [2], pp.478, 487). Nevertheless,
we do have a lower bound for A, due to P. Buser [2], in terms of the diameter
d of the Riemann surface M for I, namely

d _2
(26) Al > (47TSiIlh 5) y

where d = sup{dist(p, q) : p,q € M}.

Such lower bounds are important in connection with the location of the
so-called exceptional zeros of the Selberg zeta function Zp(s) for I, which
has the form (cf. 8], p.66 for details)

(27) Zp(s) = HH[1_ (70)~*%]  for Re(s) > 1;

{70} k=0
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the first product being taken over all the conjugacy classes of I', where

N(v) 0
(28) y~oTlvo = o ]
N(v)

7o being a generator of the class. In brief, the remarkable fact is that the
eigenvalues A are directly related to the zeros s of Zr(s) by the simple
relation:

(29) A=s(l-2s).

It is known that Zp(s) is an entire function of s which satisfies the
Riemann Hypothesis in the sense that all its non-real zeros reside on the
line Re(s) = % Apart from the trivial zeros s = —n (n € N), there can
be at most finitely many exceptional zeros, s = s; < ... < sy say with
0 < sp < 1, which correspond, by (29), to exceptional eigenvalues with

1
(30) 0<A]‘<1.

Thus a lower bound for ), confirms a zero-free interval for Zp(s). If we
define a prime number function by

(31) mr(z) = #[{v} : N(v) < 2]

then (cf. [8], pp.41 and 113) the asymptotic formula

(32) awp(z) =4Li(z)+ Z Ki(w"‘)+0(x%(€nx)_%) as ¢ — 0o
1<k<M

reflects a loss of precision in the absence of a suitable inequality for the sy,
or equivalently the corresponding A; in (29).

It is of some interest, in view of Buser’s inequality, to recall the example
in II(a) and present it in a slightly more general setting. First, we normalize
the group I'(P) to act on the unit disk |z| £ 1 by, for example, writing
D, D, n
\/B 5 \/B ) \/B )
where Dy Dy = D, so that AB =1 and

(33) A=

(34) Azz — Byy=C, (A>0,B>0).
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Now take any group of elements of the form (;O go) , (zo,y0) € C?
0 o

with |z¢|> — |yo|? = 1 and suppose that T is hyperbolic Fuchsian. Then
by the same argument as in II(a), there is a solution (X,Y’) of (34), in the
T-orbit of (z,y), with

(35) max[A|X|?, B|Y *] < N '_01)2 , (AXX —BYY = (),

or equivalently,

é
(36) max[A|X|?, B|Y)?])|C|™" < sinh® (;> +1,

2
§= —d
/01—7‘2 "

is the non-Euclidean measure of a ”"diameter” of the fundamental region F
(as specified in II(a)).

where

References

[1] R. ASHTON. A bound for the least solution of the diophantine equation
az? + bz3 + c2? + d2? = n, University of London Ph.D. thesis (1992).

[2] P. BUSER. Uber den ersten Eigenwert des Laplace-Operators auf kom-
pakten Flachen, Comment. Math. Helvetici 54 (1979) 477-493.

(3] J. H. H. CHALK. An estimate for the fundamental solutions of a gener-
alized Pell equation. Math. Annalen 132 (1956) 263-276 (cf. Comptes
Rendus, Paris 244 (1957) 985-988).

(4] J. H. H. CHALK. Units of Indefinite Quaternian Algebras. Proc. Royal
Soc. Edinburgh 8TA (1980) 111-126.

[5] J. H. H. CHALK. An application of Hooley’s method for counting solu-
tions of a diophantine equation. C. R. Math. Rep. Acad. Sci. Canada
ITI No.2 (1981) 99-103.

(6] M. EICHLER. Lectures on Modular Correspondences, Tata Institute
(1955-6), (1965).

[7] T. ESTERMANN. A new application of the Hardy-Littlewood-
Kloostermann method. Proc. London Math. Soc. (8) 12 (1962)
425-444.

(8] D. HEIHAL. The Selberg Trace Formula for PSL(2, R) Vol.1, Springer
Lecture Notes, 548.



Pell equations and Fuchsian groups 35

[9) G. HUMBERT. Comptes Rendus 166 (1918) 753, 171 (1920) 287,377.
[10] H. IWANIEC. Spectral Theory of Automorphic Functions Part I. Lecture
Notes, Rutgers University, (Spring 1987) Ch.12.
[11] E. LANDAU. J. Nachr. Ges. d. Wiss. Géttingen (1918) 86-87.
[12] 1. SCHUR. J. Nachr. Ges. d. Wiss. Géttingen (1918) 30-36.
[13] K. S. WILLIAMS. An application of the Hardy-Littlewood method. Uni-
versity of Toronto Ph.D. thesis (1965).

Department of Mathematics
Imperial College
London, SW7 2BZ



36

The Euler characteristic of graph products
and of Coxeter groups

I. M. Chiswell

To Murray Macbeath on the occasion of his retirement

Let T be a (finite, simplicial) graph, with vertices vy,...,v,. Assign
to each vertex v; a group A;. We define the graph product GT" to be the
quotient of the free product *7_; A; by the normal subgroup generated by
all [Ai, A;] for which {v;,v;} is an edge. These groups have been studied by
E. R. Green, with particular reference to their residual properties, in [14].
The groups studied by the author in 7] are a special case, in which all the
A; are cyclic. Assuming the Euler characteristics of all the A; are defined,
we give a formula for the Euler characteristic of GI' in terms of those of the
Ai. We also make some observations on the virtual cohomological dimension
of these groups in special cases, and give an explicit formula for the Euler
characteristic of a finitely generated Coxeter group.

1. Graph Products

We shall concentrate on the Euler characteristic defined by H. Bass and
by the author ([1], [6]), based on work of Serre and Stallings, so we shall
assume that all A; are in the class F'P(R), where R is a commutative ring.
Recall that a group G is in FP(R) if the trivial RG-module R has an RG-
projective resolution

0—P;—..-.—FP —R—0
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for some d, in which each P; is finitely generated. We shall denote the Euler
characteristic of G by x(G), as in §10 of [1] (in [6] this was denoted by
p#(G)). We recall some of the properties of x.

(i) fl — N — G — @ — 1 is a short exact sequence of groups, and
N,Q are in FP(R), then G € FP(R) and x(G) = x(N)x(Q).
(il) if G = A *¢ B is a free product with amalgamation, and A, B,C are all
in FP(R), then G € FP(R) and x(G) = x(A) + x(B) — x(C)
(iii) if G is a finite group whose order |G| is invertible in R, then G € FP(R)
and x(G) = 1/|G|.

For the proof of (i) see Theorem 10.9(e) in [1], for (ii) see (1) after
Theorem 3 in [6] and (iii) is obtained by a simple modification of Lemma
11 in [6].

If A is a subgraph of ', with vertices v;,,...,v;,, put

Xa = (x(4i,) — 1)(X(Ai2) -1)... (x(4i,) - 1)

and define r= Z Xa
a

where the sum is over all complete subgraphs A of I'. It is important to
note that the empty subgraph is allowed as a complete subgraph, and that
for A =0, x, =1, the empty product.

PRrRoPOSITION 1. If all A; are in FP(R), then so is GT', and x(GT') = Zr.

PrOOF. We use induction on n, the number of vertices of I'. Assume it is
true for graphs with fewer than n vertices. By Lemma 3.20 in [14], we have
a decomposition

GI'= (A, X GE)*gp GZ

where Z is the graph obtained by removing the vertex v, and all edges
incident with it from I'; and E is the subgraph of I" generated by all vertices
of I adjacent to v,. Inductively GE,GZ € FP(R), so (A, x GE) € FP(R)
by Property (i) above, hence GT' € FP(R) by Property (ii). Moreover,

X(GT') = x(A1 x GE) + x(GZ) — x(GE)
= x(A1)Xx(GE) + x(GZ) — x(GE)
= X(GE)(x(41) — 1) + x(GZ)
=Ze(x(A1)-1)+Zz
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using the induction hypothesis. Now L p(x(A4:1) — 1) is the sum of the x,
over all complete subgraphs of I' which contain v;, while £z is the sum of
X, over all complete subgraphs of I' which do not contain v,. Thus

Ye(x(A1)—1)+Ez=5%p

as required.

We state two special cases of this formula as corollaries. The first corol-
lary was noted by Droms [13], as a consequence of a result of W. Dicks [11].
One could alternatively use Theorem 10 in [17].

CoOROLLARY 1. If GT is a graph group (Le. all the A; are infinite cyclic),
then x(GT') = Z;;O(—l)jn]—, where n; is the number of complete subgraphs
of I with j vertices.

This follows from Proposition 1 on noting that the infinite cyclic group
is in F'P(R) for any commutative ring R and has Euler characteristic 0 (see
the remarks after Theorem 3 in [7] and §1.4 in [21]). Graph groups have
been extensively studied by Droms and others (see [12], [13]).

COROLLARY 2. If 2 is invertible in R and GT is a right-angled Coxeter
group (i.e. all the A; are cyclic of order 2), then x(GT') = Z;;O(—%)jnj,
where n; is as in Corollary 1.

This follows from Property (iii) above. Of course we have a similar
formula whenever all the A; are isomorphic to a single group. We mention
Corollary 2 because it can be obtained by geometric means, a point we shall
return to shortly.

There is a result similar to Proposition 1 for the Euler characteristic
defined by Brown [5], using Prop.7.3, Ch.IX in [5]. If all A; are in FH,
then so is GT" and the formula x(GI') = Er holds, where now x denotes the
Brown characteristic. In order to make the argument of Prop. 1 work the
following result, which generalises Proposition 2 in [7], is needed.

PROPOSITION 2. In any graph product, if all the A; are virtually torsion-
free, then so is GT.

ProoF. Let B; be a torsion-free normal subgroup of finite index in A;.
There is a homomorphism GI' — [[_, Ai/B; induced by the quotient
maps A; — A;/B;. Let Kr be its kernel. We show by induction on
the number n of vertices of [' that K is torsion-free. If I' is a complete
graph, then Kt = [[_, B; is torsion-frec. Otherwise after renumbering
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we can assume there is some vertex not adjacent to v;. We then have the
decomposition used in Prop. 1:

GT = (A, x GE) xgg GZ.

Now A, x GE is the graph product GH, where H is E together with v,
and all edges of [ joining v; to a vertex of E, and both H and Z have
fewer vertices than I'. Corresponding to this decomposition of GI" we have
a decomposition of K as the fundamental group of a graph of groups using
the Bass-Serre Theorem. On noting that Kr NGH = Ky, ArNGZ = Kz
and At N GE = Kg, the result follows by using the induction hypothesis
on H,Z and E just as in Prop.2 of [7].

2. Coxeter Groups

We now give an explicit formula for the Euler characteristic of a finitely
generated Coxeter group. A recursive formula to calculate this was given
by Serre [21: Prop.16(c)]. Such a group can be described by a finite graph
I' with a label ¢(e) attached to each edge e, which is an integer > 2. Let
Z1,...,Zn be the vertices of .

The corresponding Coxeter group Cr is defined to be the group with gen-
erators z,,...,7, and relators 22 for 1 < i < n, together with
(z;z;)?Uz% D for each edge {zi,z;} of I'. This method of specifying a
Coxeter group is used in [10] and [19], and is the most useful here. It differs
from the usual one [9; 9.2], in that edges with label 2 are included, and we
do not use edges {z;,z;} with label co to indicate the absence of a relator
which is a power of z;2;. We recall that, if A is a subgraph of I with the
induced labelling, then Cp is a subgroup of Cr in the obvious way (see
[4; Ch.4, 1.8]). If GT is a right-angled Coxeter group as in Corollary 2, it
coincides with the group Cr (using the same graph I'), where each edge is
given label 2.

Before stating our formula we need a combinatorial lemma which is
presumably well-known, but we are unable to give a reference, so a proof is
included. We define i, to be the number of chains of the form
0 = E gEl ggEr = E in a set E with k elements. It is not diffi-

cult to see that Ax » = r! S(k,r), where S(k,r) is the Stirling number of the
second kind, that is, the number of equivalence relations on a k-set with r
equivalence classes, and that r! S(k,r) is the number of surjections from a
k-set to an r-set.
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LEMMA. For any k > 0, we have Zf:o(_l)r)‘k,r = (=1)~

Proo¥r. The proof is by induction on k, and it is obviously true when
k = 0. Suppose k > 1, so that Ay o = 0. If » > 1, then by considering

the possibilities for | = |E,_;| in a chain of subsets as above, we obtain
N2 30y (s Thus
k k
Y (=D A= (=D Ay
r=0 r=1
k k=1
= Z(—l) Z (l))‘l'r_l
r=1 l=r—1
E—1 141
k
= Z Z(_l)r(l>)‘l,r—l
=0 r=1
k—1 k l
--> (1) 2o
=0 r=0

k-1
== Z (?)(—1)1 (induction hypothesis)

=0
(—=1)* (binomial theorem)

as required.

PROPOSITION 3. Suppose that, for all subgraphs A of ' such that Cp is
finite, |Ca| is invertible in R. Then Cr € FP(R), and

—1ylal
e =35

A

where the sum is over all subgraphs A of ' such that Cp is finite. (Here
|A| means the number of vertices of A, the empty subgraph is allowed as a
subgraph and Cy is the trivial group).

PROOF. According to §14 in [10], there is a contractible Cr-complex Y

on which Cr acts properly. The quotient Y/Cr is a simplicial complex, in

which an r-simplex is of the form § C Ag g A C...CA, = A, where A is
# #

a subgraph of I" such that Cjp is finite, and the A; are subgraphs of A.

Moreover, up to conjugacy, the stabilizer of a lift of this simplex to YV
is the subgroup Ca, of Cp. If s = |Ag| and 7 = |A|, then the number of
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r-simplices (starting with A¢ and ending with A) is A;_, . Therefore, by
Theorem 2 in [6], Cr € FP(R) and

n i
_ r
@@= T LT Sy
=0 |A|=i 9=0 A,CA Ca
Ca is finite |A°|=3
n
SN0 S Dol S W
= . — | Ao
=0 |A|=1 = OAQCA
Ca is finite [Ao]=s

(using the lemma)
a (=1l
= Z(_1) Z T
A AoCA 1780
But substituting ¢ = 1 in the formula in Exercise 26(¢) on p.45 of [4] gives

T (=pleel 1
ICaol — ICal

AoCA

and the proposition follows.

The author is grateful to the referee for the final step in the proof of
Prop. 3, which results in a simplification of the original formula, making it
considerably easier to use.

If |Cal is finite, then A must be a complete subgraph of I' (otherwise
one can find an infinite dihedral group in Cx). In order for Proposition 3

to be useful one needs a list of the finite Coxeter groups. This is provided
by §9.3 and Table 10 in [9].

In the case of a right-angled Coxeter group, the subgraphs A of I" for
which |Ca| is finite are precisely the complete subgraphs of T', because if A
is complete, then Cp is the direct product of |A| cyclic groups of order 2,
so has order 2!4!. Thus the formula of Cor. 2 follows from Prop. 3.

A finitely generated Coxeter group CT is called aspherical by Pride and
Stohr [19] if I’ contains no triangles A such that Cp is finite. In this case
the formula of Proposition 3 simplifies to

n 1
MO =1- 5+ 250
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where the sum is over all edges e (recall that edges are unoriented and are
viewed as unordered pairs of vertices, n is the number of vertices of " and
¢ is the labelling function). This formula is valid without the assumption
in [19] that " has no isolated vertices. It can also be obtained from their
results. They obtain a presentation closely related to that of Cr which is
concise and CA (combinatorially aspherical) in the sense of [8], and the
Euler characteristic of such a group is given by the following proposition;
it is then easy to calculate x(Cr) using the properties of x listed at the
beginning.

PRroOPOSITION 4. Let G =< z1,...,Tm;7]",...,75* > be a concise, finite
CA presentation of a group G, where r; Is not a proper power in the free
group on i,...,Tm,m forl < i < s. Assume the commutative ring R is such

that all n; are invertible in R. Then G € FP(R), and
(G)=1-m+ 2’: 1
X - i=1 i .

ProoFr. This is a straightforward generalisation of the argument used to
prove Theorem 4 in [6]. From the argument of [8:Prop. 1.2], we obtain an
exact sequence

0 — @/_,Z[G/C)) — 2, ZG — ZG — Z — 0

where C; is the subgroup of G generated by r;. We then apply the functor
R ®z — to obtain an exact sequence of RG-modules and proceed as in [6].
One needs to know that r; has order »; in G, and this is proved in [15].

3. Virtual Cohomological Dimension

In the situation of Prop. 2 it is natural to ask what is the virtual
cohomological dimension (ved) of GT' in terms of ved(A;). We can say
nothing in general except to note that part of Prop.4 in [7] generalises.

PROPOSITION 5. In any graph product, if all A; have finite ved, then so
does GT'.

ProOF. If ' is a complete graph then GT = [];_, 4;, and the result follows
easily (take a torsion-free subgroup B; of finite index in A;, so [[._, Bi is
of finite index in []’, Ai, and has finite cd using Prop.6 in [21] and induc-
tion). Otherwise we have the decomposition of GT" as a free product with
amalgamation used in Props 1 and 2, and the result follows by induction
on n, just as in Prop. 4 of [7].
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In [7] there is an ill-considered conjecture about ved(GT) in the case that
all the A; are cyclic. The author thanks J-P. Serre and T. Januszkiewicz
for showing him counterexamples. The simplest example is the right-angled
Coxeter group G with presentation

<&ty @ps2l =1 (1< i< n), [#5,2i] =1 (1<1<n) >

where n > 5 and in the commutator relations indices are taken modulo
n. It follows from Corollary 3 in [19] that G has ved equal to 2, while
the number w(G) in [7] is equal to 1. In this case it is particularly easy
to see G is an NEC group. A faithful action as a properly discontinuous
group of isometries of the real hyperbolic plane, with compact fundamental
domain, is obtained by letting the r; act as reflections in the sides of a
regular hyperbolic n-gon whose interior angles are right angles (this result
is attributed to Dyck in §5.3 of [9]). For simple ways to construct such an
n-gon see (2], [3; §7.16] or [20; §3].

We finish with an example of a sequence of right-angled Coxeter groups
for which the conjecture gives the correct answer, in the hope that it might
eventually provide insight into a correct description of the ved. Let G, be
the group with presentation

<zl Tl =1(1<i<n), [z,z;)=1(or [i—j]>2)>.

Let X, denote the graph X, defined in [7]. Its vertices are vy,...,vn—1,
where v; = {z;, 241}, and there are edges joining v; to v; for |i — j| > 3.
The number w(G5,) in [7] is the maximum possible number of vertices in a
complete subgraph of X,,.

Now X, has a complete subgraph with vertices vy,vs,v7,...,V3k41,

. [n — 2}
3
([z] denotes the integer part of z). This has k + 1 = [2£L] vertices, so

w(Gr) > [2E). (It is not difficult to see directly that w(Gn) = [2FL], but
this is not needed).

where

Let ¢, : G,, — C; be the homomorphism taking each z; to the genera-
tor of C7, the cyclic group of order two, and let I{,, be the kernel of ¢,,. We
apply the Reidemeister-Schreier process to K, using the transversal {1, z, }.
We have (using 7 to denote the representative of = in this transversal):

q=AN—1 R | ;—
Generators zj(ZT;)te zj=xj27, j=1,.

and y; = z1z;, j=1,...,n
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Relators 2 = (Lz;)(1.2;) "'z )z;
= (x,-xl_l)(wlx,-) = 2;Yi (1<:t<n)

ziziey! = (ziz;Yzizy) =yizi (1<i<n)
[zi,z;] = xixjwi_lw]-_l
= (ziey ) (@12;)(@r12:) " (212} )
= ziyy; 2y, for |i —j| > 2
aifei,zj)ey ! = (ziz)(ziey ey (@) ey

_l _l . .
= vyizjz; y; , for|i—j|>2

Also, z; = 1. Hence K, has a presentation with

Generators  ya,...,¥n

Relations yr=...=y2 =1

i y;) =1 for3<i,j<nand|i—j|>2
(y3'y;)? =1, for j > 3.

(This can be generalised to arbitrary Coxeter groups. See [19], where their
presentation (2.4) can be obtained without assumirg the Coxeter group is
aspherical).

The last relations can be rewritten as y]-ygy]-_l = y{l. Hence, if n > 4,
we have a decomposition

A’n = Gn—2 *G,_3 (Coo AN Gn—3)

where Gn_2 is generated by y3, ..., yn, Gn_3 is generated by y4, ..., yn, Cso
is an infinite cyclic group generated by y2, and G,,—3 acts on Cx via the
map ¢n_3: Gn_z — Co.

By Prop.2 (or indeed by Prop.2 in [7]), G,_3 has a torsion-free subgroup
H of finite index. Then by Prop. 6 in [21], ¢cd(Co @ H) < 1+ cd(H) (since
cd(Co) = 1), hence ved((Coo % Gros) < 1 + ved(Gr_3). Therefore, by [21]
Prop. 15,
ved(Gy) < max{ved(Gp_2),1 + ved(Gr_3)}.



Euler characteristic of graph products 45

PROPOSITION 6. For all n > 1, ved(Gy) = [242] = w(Gy).

ProOOF. The proof is by induction on n. If n = 1, then G, is cyclic of
order 2, so ved(G) = 0. For n = 2, Gy, is the infinite dihedral group, which
has an infinite cyclic subgroup of finite index, so ved(G2) = 1. Also, G; is
isomorphic to ((C2 x C2) * C3), which is free by finite, so ved(G3) = 1. (The
kernel of the obvious homomorphism onto Cs x Co x C3 is free — see, for
example, [18]. For the general characterisation of free by finite groups, see
the references in Example 2 after VIII.11.2 in [5]). Also, the graph X, is
empty, X consists of a single vertex and X3 of two isolated vertices. It is
now easily checked that the Proposition holds for n < 3.

If n > 4, then by induction and the inequality preceding the Proposition,

ved(Gr) < max{[251],1 + [252]}
=1+ [25%]) = [*H).

But by Prop. 4 in (7], ved(Gr) > w(Gx), and as noted above w(Gy) > [21],
and the result follows.

We note that the automorphism group of G,, has been studied by James
[16]. This paper also contains a discussion of the connection between tran-
sitive representations of G, and cell decompositions of n-manifolds. The
automorphism group of a general Coxeter group is studied by Tits in the
immediately following paper [22].
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Infinite families of automorphism groups

of Riemann surfaces

Marston D. E. Conder and Ravi S. Kulkarni

Dedicated to A. M. Macbeath with much respect

1. Introduction

Let a,b be two rational numbers, with @ > 0. Consider the sequence
Nop:gr— ag+d, for g=2,3,.... We say that this sequence is admissible
if for infinitely many values of g the number ag + b is the order of an
automorphism group G of a compact Riemann surface X, of genus g. When
this occurs, the pair (X,,G), or simply X, or G, is said to belong to N, ;.

A cocompact Fuchsian group gives rise to an admissible sequence of the
form a(g — 1), where a is a positive rational number which depends only
on the group. For example the {2,3,7}—triangle group gives rise to the
sequence 84(g — 1); see Macbeath [Mc] for an early thorough discussion
of these aspects. Conversely, it was shown in [K] that every admissible
sequence of the form a(g —1) arises from a fixed finite number of cocompact
Fuchsian groups.

There are a few known admissible sequences N, p where a + b # 0.
Wiman showed that 4g + 2 is the largest order of a cyclic automorphism
group of a compact Riemann surface of genus ¢, and he also exhibited such
surfaces for every g; see [W], [H]. Accola and independently Maclachlan
showed that for infinitely many values of ¢ the largest order of an automor-
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phism group of a compact Riemann surface of genus ¢ is 8¢ + 8. They also
exhibited for every ¢ > 2, a Riemann surface admitting an automorphism
group of order 8¢g+8; see [A], [MI]. It is easy to see that this group contains
a cyclic subgroup of order 2g+2. A partial explanation of such families was
given in [K], where it was proved that if ag + b is an admissible sequence
with a + b # 0, and G is a group belonging to it, then G contains a cyclic
subgroup whose index is bounded above by a number depending only on a
and b, and moreover, a + b must be positive and 27" must be an integer. In
this paper we further analyse such families where N, is large in the tech-
nical sense that for all but finitely many values of ¢ we have ag +b > 49 —4.
Our main result is the following;:

THEOREM. Let N, be a large admissible sequence with a + b # 0. Then

27" is a non-negative integer and either

(1) a=4,5,60r8, or

(2) a =
c —_—
not an integer.

4c

1 for some integer ¢ where ¢ = 4 or ¢ > 6, in which case a is

We also exhibit several families of automorphism groups with the values
of a restricted as above. In particular we show that the sequence Ngp
is admissible whenever b is an odd positive multiple of 8, extending the
examples described in [A], [M]]. A natural question of what values can be
taken by b (for given a) leads to various construction problems in the theory
of groups.

2. Signatures of large automorphism groups

Let G be an automorphism group of a compact Riemann surface X, of
genus g. We say G is large if its order is strictly greater than 4(g — 1).
Suppose X, /G has genus h with b branch points, and let the b branching
indices be n,, ng, ..., n;, in increasing order.

2.1 PROPOSITION. If G is large then h = 0, and3 < b < 4. Ifb =4, then
ny = ng = 2, while if b = 3 then ny £ 5. More precisely, only the following
possibilities for the branching indices can occur:

(A) Four branch points:
(a) One infinite family: (2,2,2 ) n) forn > 3,

(b) Other cases: (2,2,3,n) for3 < n <5;
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(B) Three branch points:

(a) One doubly-infinite family: (2,m,n) for 3 < m < n, withn > 7 if
m=3,andn > 5 if m=4,

(b) Five singly-infinite families: (3,3,n) forn > 4, (3,4,n) forn > 4,
(3,5,n) forn > 5, (3,6,n) forn > 6, and (4,4,n) forn >4,

(c) Other cases: (3,7,n) for 7T < n < 41, (3,8,n) for 8 < n < 23,
(3,9,n) for 9 < n <17, (3,10,n) for 10 < n < 14, (3,11,n) for11 < n <
13, (4,5,n) for5<n <19, (4,6,n) for6 <n <11, (4,7,n) for7T<n <9,
(5,5,n) for 5 <n <9,and (5,6,n) for6 <n <7.

PROOF. These are easy consequences of the Riemann-Hurwitz formula,
1

(2.1.1) 29— 2 = |G|(2h—2+2,~(1——)).
n;

We seek the values of & and n; so that the order of G is greater than 4(g—1),
which means the multiple of |G| on the right hand side of (2.1.1) must lie
strictly between 0 and 1. In particular, if A > 2 then obviously this cannot
happen, while if h = 1 then (2.1.1) implies that at least one n; must occur,
but then since each n; is at least 2, again the restriction is violated. Hence
k must be 0. Similarly (with A = 0) the formula forces b to be at least 3,
and as each n; is at least 2, also b is at most 4.

Now suppose the number of branch points is 4. Then (2.1.1) reduces to
1 1 1 1
(2.1.2) 2g—2 = |G|(2 S e = ),

ni < 2. Since the
4

n; are in increasing order, this implies ny = ny = 2, and % < nis + n% < 1.
If ng = 2 then the value of ny is unrestricted (except for the fact that it
cannot be 2), while on the other hand, if n; = 3 then the value of ny must
lie between 3 and 5 for the inequality to hold. This deals with case (A).

3 1 1 1
and we seek the values of n; so that <mtutat

Now suppose the number of branch points is 3. Then (2.1.1) reduces to
1 1 1
(2.1.3) 29— 2 = |G|(1——l————),

and we seek the values of n; so that % < nil + niz + nia < 1. If n, > 6 clearly
the inequality cannot hold, so 2 < n; € 5. When n, = 2 the values of n,
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and n3 are unrestricted (except for those which make the right hand side of
(2.1.3) non-positive), giving the doubly-infinite family of case (B), subcase
(a). The remaining subcases are easily obtained in a similar fashion. I

3. A lemma on groups with a cyclic subgroup of bounded index

The following lemma is useful in eliminating possibilities for the branch
data of an admissible sequence N, 3 with a4+ # 0. We would like to thank
Peter Neumann for the elegant use of Schur’s theorem on the transfer in its
proof.

3.1 LEMMA. Suppose p,q and d are positive integers, such that p and ¢ are
relatively prime. Then there are only finitely many finite groups which can
be generated by two elements x and y of orders p and ¢ respectively such
that their product zy generates a subgroup of index at most d.

PROOF. Let G be any finite group which can be generated by two elements
z and y of orders p and ¢ respectively, with the product w = zy generating
a (cyclic) subgroup H of index at most d.

We claim that G contains a central cyclic subgroup of index at most d!.
Indeed consider the natural permutation representation of G on right cosets
of H (by right multiplication): the kernel of this representation is a normal
subgroup K of index at most d! in G, and because it is a subgroup of H,
it is also cyclic, generated say by z (where z is a power of w). Further,

as z is centralized by zy we have 27! !

zz = yzy~ ' = 2° for some s, giving
z=2aPzzP = 2% and z = ylzy~ ¢ = 2*°, so that s» = s¢ = 1 mod |z
(where |z| denotes the order of z). But p and ¢ are coprime, so s = 1 mod

|z|, and therefore z is centralized by both # and y. Thus K is central in G.

Next, let m be the index of the center Z(G) in G. This is at most d! (as
Z(G) contains K), and by a theorem of Schur, the transfer of G into Z(G)
is an endomorphism of Z(G) taking each element to its mth power, so that

the order of every element of the commutator subgroup G’ is a divisor of m
(see [R; Chapter 10]).

On the other hand, the Abelian factor group G/G' is generated by two
elements of orders dividing p and ¢, so the order of G/G’ is a divisor of pgq,
and in particular, G' contains w??. It follows that wP9™ = 1, so the order
of H is at most pgm, and thus |G| = |G : H||H| < dpgm < dpqd!. As there
are only finitely many finite groups of any given order, this completes the
proof. 1
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3.2 COROLLARY. If p and ¢ are relatively prime integers, then in any
admissible sequence Nop with a +b # 0 there can be only finitely many
groups having branch data of the type (0;p, q,n) for some n.

PROOF. Assume the contrary. Any group G in N, with branch data
(05 p, g, n) is generated by two elements = and y of orders p and q respectively,
with product zy of order n, and the Riemann-Hurwitz formula (2.1.3) may
be rewritten as

_ 1 1 29 — 2

=1->= —= —

p q ag+d’

[2)
)
—_
p—"g
S|=

since |G| = ag + b. Now as n tends to oo, the order of G (and hence also
the genus ¢g) must increase, and taking the limit of both sides of (3.2.1)

gives 0 =1 — lp - % - % Note that this determines the value of a, but
more importantly, it implies % = % — %-‘;;—i, which in turn rearranges and

simplifies to give

(3.2.2) AL 2(a+b),
n n a

fixing the index in G of the cyclic subgroup generated by zy. The lemma
now provides the required contradiction. i

(Note: a similar argument is used in [K] to bound the index of one or more
cyclic subgroups of any group G belonging to an admissible sequence N, p
with a + b # 0, and this will be used again below.)

4. Proof of the Theorem

Suppose N, p is a large admissible sequence with a + b # 0. As may be
seen from the Riemann-Hurwitz formula (and explained in detail in [K]), at
least one of the branching indices in the signatures of the Fuchsian groups
uniformizing the groups belonging to N, must tend to oo as the genus g
tends to co. Hence for large genera we need only consider the signatures
listed below:

(i) (0;2,2,2,n) for n > 3,
(i1) (0;2,m,n)for3<m <n,withn>7if m=3,andn >5if m =4,
(ii1) (0;3,m,n)for 3<m <nand m <6, withn>4if m =3,

(iv) (0;4,4,n) for n > 4.
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In cases (i) and (iv) the Riemann-Hurwitz formula gives a = 4, and
similarly in the subcases (3,3,n) and (3,6,n) of case (iii) the values of a
are 6 and 4 respectively. On the other hand Corollary 3.2 precludes the
possibilities (3,4,n) and (3,5, n) in case (iii), along with the subcases of (ii)
in which m is odd.

Thus we are left with those signatures of case (ii) in which m is even,
say m = 2¢ where ¢ > 2. Here the Riemann-Hurwitz formula gives a = 64_"1 ,
and in particular a = 8,6 or 5 when ¢ = 2,3 or 5 respectively, while in all

other cases a is a non-integer.

Next let G be any group belonging to N, ; with branch data correspond-
ing to one of the signatures listed above. The same argument as used in the
proof of Corollary 3.2 (and given in more detail in [K]) shows that g%bl
is the sum of the indices in G of one or two of its cyclic subgroups, and so
% is an integer. Also unless G itself is cyclic, this sum is at least 2, and

therefore b > 0.

So finally, assume & < 0, with G cyclic (of order equal to one of the
branching indices). Then 49 — 4 < ag + b = |G| < 49 +2 by Wiman’s
theorem, giving a = 4 and b = —2, and |G| = 4g — 2. In particular, we find
G must have branch data of one of the types (2,2,2,4¢9 —2), (3,6,49 —2) or
(4,4,49 —2), noting that the type (2, m, 49 —2) fails to satisfy the Riemann-
Hurwitz formula. On the other hand, since G is cyclic its order is bounded
above by the least common multiple of all but one of its branching indices, so
that |G| = 2, 6 or 4 respectively in these cases, contradicting the assumption
that N, s is admissible. Thus b > 0 always, and the proof is complete. I

5. Examples and constructions

The largest value of a provided by our theorem is 8, corresponding to
groups with signature (0;2,4,n) for n > 5, and a necessary condition for
the admissibility of a sequence Ng is that b is a non-negative multiple of
4. The examples in [A] and [MI] show the sequences Ngg and Ng o4 are
admissible, along with a few other cases where b is an odd multiple of 8.
However these and many others are consequences of the following results.

5.1 General construction. Suppose H s any finite group that can be
generated by two elements z and y of orders 2 and 4 respectively, such
that y 1s not an element of the (index 2) subgroup generated by zy and y*.
Also let K be a cyclic group of arbitrary finite order, generated say by z.
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Now form the semi-direct product (or split extension) KH of K by H, with
conjugation of K by x and y defined by zzz™! = yzy~! = z7!, and let G
be the subgroup generated by the elements X = zz and Y = y.

It is easy to see that X and Y have orders 2 and 4 respectively. Also if
s is the order of zy then (XY)* = 2°(2y)® = z° because z is centralized by
zy, and the order of XY is equal to sm, where m is the order of z°. The
Riemann-Hurwitz formula gives

99 —2 = |G|(1—§————)

and thus |G| = 8¢ — 8 + 4k, where k = Js%l, the index in G of the cyclic
subgroup generated by XY

In particular, this index & = |G : {XY')| is bounded, whereas the order
of G i1s not (since the order of z° can be arbitrarily large), and therefore
the sequence Ng4ix—s 1s admissible. For example, if the order of I{ itself
is m (chosen to be coprime to s), then z° generates K and in that case
G = KH, so that k = % = lgl, which is the index in H of the cyclic
subgroup generated by zy. Similarly if the order of z is chosen to be sm
(an arbitrary multiple of s), and 2° generates the largest subgroup of K
contained in G, again k will be the index of (zy) in H. In other cases the
value of & depends on the choice of the group H, as will be evident in the
examples given below.

(5.1.1) If H is the dihedral group Dy = (z,y | 22 = y* = (zy)? = 1) of
order 8, then the order of z may be chosen freely, giving k = 4 in each case,
and we obtain the groups of order 8¢ + 8 (and arbitrary genus g) in the
Accola-Maclachlan sequence Ng g.

(5.1.2) If H is the octahedral group Sy = (z,y | 22 = y* = (2y)® = 1) of
order 24, and K 1s cyclic of order 3m for any positive integer m, we have

k = 8 and obtain groups of order 8¢ 4+ 24 (= 24m) in the sequence Ng a4,
for all g divisible by 3; ¢f. [A], [M]].

(5.1.3) If instead H is taken as the group (z,y | 22 = y* = (zy)* =
(z~'y~!zy)? = 1), which is an extension of the Klein 4-group Z, x Z, by
the group Z, x Z4, while K is cyclic of order 4m for any positive integer
m, again we have k£ = 8 and obtain groups of order 8¢ + 24 in the sequence
Ng, 24, but this time for all ¢ = 1 mod 4 (as 8¢ + 24 = 32m).

(5.1.4) For each positive integer d in turn, let H be the group (z,y | 22 =
yt = (zy)t = (wyx_ly_l)d = 1), which is an extension of Zy;xZ4 by Z,x Z4,
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of order 8d%. (Note: the elements zyz~!'y~! and 7'y~ 'zy generate the
normal Abelian subgroup of order d2.) With K cyclic of order 4m as above,
the construction gives £ = 2d? and a family of groups of orders 8¢ + 8d% —8
for the appropriate ¢ in each case. In particular, the case d = 1 exhibits the
admissibility of the sequence Ng .

(5.1.5) For any integer prime congruent to 1 modulo 4, let A be a primitive
4th root of 1 modulo p, and form the semi-direct product of a cyclic group
(w) of order p by the group Z; x Zy = (u,v | u? = v = vl luv = 1),
with conjugation defined by wwu™! ! and vwv™! = w*. Now take H

to be the group generated by the elements z = wu (of order 2) and y = v

= w"

(of order 4), and apply the same construction as used above. This time the
product zy has order 4 since 1+ A+ A2+ A3 = 0, and the group H has order
8p since zyz~'y~! = w!™* (which has order p). In particular, the index
of (zy) in H is 2p, and thus we obtain the admissibility of the sequence

Ng gp—g for all such p.

Note that in all these examples the index % is even, and b is a multiple of
8. In fact this is always the case:

5.2 PROPOSITION. If the sequence Ngp 1s admussible then b 1s divisible
by 8.

PROOF. Suppose b is an odd multiple of 4. Let G be a group in Ng; which
has generators z and y of orders 2 and 4 respectively, such that zy generates
a (cyclic) subgroup H of order n and index d in G. By the observations
made earlier, |G| = 8¢ — 8 + 4d (where ¢ is the genus of the associated
surface), and so b = 4d — 8, implying that d is odd.

As in the proof of Lemma 3.1, the core of H is a normal subgroup It
of index at most d! in G, generated by some power of zy. Now consider
Co(I{) = {g € G| gw = wg, Vw € K}, the centralizer of I\’ in G. This
too 1s a normal subgroup of G, and because it contains H, it also has odd
index in G. In particular, the factor group G/Cg(K) has odd order (and
therefore no elements of order 2), so both # and y lie in Cg(I\), and thus I¥
is central in G. By Schur’s theorem it now follows that if m is the index of
the centre Z(G) in G, then (zy)*™ =1 (since (zy)* lies in the commutator
subgroup G'), so |H| < 4m < 4d! and therefore |G| = |G : H||H| < 4dd\.

Again this bounds the order of a group in the sequence Ng 3, contradict-
ing admissibility. 11

More importantly, we can also prove the following:
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5.3 PROPOSITION. For every odd positive integer c, the sequence Ng g is
admissible.

PrROOF. Let N be the direct product of two cyclic groups generated by
(commuting) elements « and f, each of order 2d, where ¢ = 2d — 1, and
form the semi-direct product of N by the dihedral group Dy = (u,v | u® =
v* = (uv)? = 1) of order 8, with conjugation defined by ua'fiu~! = a’p*
and vaiBiv! = o Ip for 0 < 1,5 < 2d. Take z = v and y = Bv, which
are easily seen to have orders 2 and 4 respectively, and let H be the group
they generate. As zy = uffv = auv, we find (zy)? = awvauv = aufvuv =
a?(uwv)? = o2, and it follows that H has order 8d* (with a normal subgroup
of order d? generated by a? and 82). In particular, as zy has order 2d, the
index of zy in H is 4d, and so our construction provides groups of order
8g + 16d — 8, that is, 8¢ + 8¢, for infinitely many values of the genus g. 1

All of the examples to which we applied our construction above are
soluble, but there are certainly other cases where the resulting groups are
insoluble. For instance H may be taken as the symmetric group Ss, which
is generated by the odd permutations z = (1,2) and y = (2,3,4,5), and in
this case we obtain another illustration of the admissibility of the sequence
Ng gs.

The profusion of examples is explained by the fact that the free product
Zy %2y = (z,y | 2® = y* = 1) is SQ-universal, which means that every
countable group is isomorphic to a subgroup of some quotient of Zy * Z4.
Indeed for every n > 5, even the (2,4,n) triangle group (z,y | 22 = y* =
(zy)™ = 1) is SQ-universal (see [N]); also it can easily be shown that the
symmetric group S, is itself a quotient of Z; * Z, for all but finitely many
positive integers n. Thus there are plenty of examples for H to choose from.

Finally we note that similar constructions may be applied in the cases
of smaller values of the parameter a, and again there are infinitely many
possibilities to choose from because of the SQ-universality of the associated
triangle groups in each case. On the other hand, the admissibility of a
number of sequences N, p for small values of b can be ruled out by elementary
group-theoretic means, but we shall not pursue that matter here.
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Planar hyperelliptic Klein surfaces and

fundamental regions of N. E. C. groups

A. F. Costa* and E. Martinez*

A compact Klein surface X is a compact surface with a dianalytic
structure. We shall say that X is hyperelliptic if there exists an involution
# of X such that X /() has algebraic genus 0. A planar Klein surface has
topological genus 0 and ¥ boundary components (we shall assume & > 3).
If we denote the hyperbolic plane by D, a compact Klein surface X can be
expressed as X = D/T where I is a non-Euclidean crystallographic group
(NEC group for short, see [6]). Hyperelliptic surfaces have been character-
ized by means of NEC groups in the paper [2]. It is not easy to decide using
the main result of [2] if a given planar Klein surface is hyperelliptic. In this
note we characterize the hyperellipticity of planar Klein surfaces by means
of geometric conditions. In this way we obtain information about the points
in the Teichmiiller space that correspond to hyperelliptic Klein surfaces.

1. Preliminaries.

A NEC group T is a discrete group of isometries of the hyperbolic plane
D with quotient space D/T" compact. NEC groups are classified according
to their signature, which has the form

(g5 £ [ma, ooy me)s {(nany ooy Ry )y oo o5 (1, -2y Tk, ) )

where the numbers m; and n,; are integers greater than or equal to 2, and g,

* Partially supported by CICYT, PB89-0201.
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r and k are non-negative integers. This signature determines a presentation
of the group T, given by the following data:

Generators: Relations:
z; f=1,...,7r) 2=
e; (t=1,..,k) e; cipeicCis; =1
(i=1,..,k) . . 3
¢i . cij—1)° = (i) = (cij—16i5)™7 =1
J (G=1,..5) (cij—1) (cij) (cij i)

ei [Jlac 8] =1 (+)
d; (=1,..9) Hw,' e; ]._[d,2 =1 (%)

where (*) or (**) occurs according to whether the sign of the signature is
‘+’ or ‘=’. The z, are elliptic, the e; are generally hyperbolic, the a;, b; are
hyperbolic, the c;; are reflections and the d; are glide reflections.

Let X be a compact Klein surface with genus ¢ and £ boundary compo-
nents: Then X can be expressed as D/I" where I" has signature

(95 [ (), - K (OOD)-

Such a group is said to be a surface group. We are concerned with planar
surfaces (spheres with holes), so ¢ = 0 and we shall assume k& > 3.

Let T’ be a planar surface group, then I' admits a Wilkie fundamental
region W, see [8], that is a hyperbolic polygon with sides labelled

' ] '
€1, Y1, €15 €25, Y2, €2y <oy €ky Yy €

and angles
(e, vi) + (vi,€1) =7 (e1,€2) + (€, €3) + ... + (€}, €1) = 2m.

The edges of W are identified by e;(e;) = €; (+ =1,...,k) and the reflection
ci of I fixes v; (¢ = 1,...,k). Each region W is obtained by choosing a
point P in the interior of D/T and cutting by geodesics joining P with each
boundary component in D/T'. Given a point P in the interior of D/T, let
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Mp be a Wilkie fundamental polygon obtained by cutting D /T by geodesics
having minimal length from P to each boundary component (thus {e;,~;) =
(vi,€1) = 7/2). Then Mp is a Wilkie region with minimal perimeter among
the Wilkie polygons obtained cutting from P. We shall call Mp a minimal
Wilkie polygon. Without loss of generality we may assume that Mp is a
convez polygon (see [7]).

2. Rectangular Polygonal Fundamental Regions.

Let T be a NEC group with signature (0; +;[-];{(-),.*.,(-)}). In this
section we shall describe the construction of a fundamental region for T’
that is a polygon with right angles from a minimal convex Wilkie polygon

of T.

First we shall describe the fundamental step in our construction. Assume
that we have a fundamental region for I" that is a polygon @ having in its
boundary sides labelled with the following letters:

..51, vy P2, 52, 9912,

and that there exists a hyperbolic element e in T', such that e(¢5) = ¢2 and
reflections ¢; and c; such that ¢,(6;) = é6; and c2(62) = 62. Let p be the
intersection of @ with the common orthogonal line to §; and §,. Suppose
that p cuts @ in an arc joining 6, with 8. Let us call 6] and &7, &, and
84 the segments on §; and &2 such that if we cut Q by p we obtain two
polygons ¢, and @, with sides labelled:

R AN T AR A

for Q; and
5117 sy P2, 557 H
for Q2. Note that with this labelling @ has the labelled sides

...5'1U5lll, vy P2, 512,U6,27 99127

Let Q' be the polygon @, U e™!(Q2) that has labelled sides:
8, S5 UeTH(SY), e (p), e, ...

We shall call Cs,s, (Q) the polygon Q' relabelled as follows:
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o replace 8 and e71(§)) by é; and &}
e replace p and e~ !(y) by p and g’
e replace 6, Ue~!(87) by 62 and &
Let s be a side in Q' different from the above ones:
e if sisin @, give it the same label as in @,
o if s=e7!(s') with s’ in Q2 give s the same label that s’ has in Q;

We remark that Cs,s,(Q) is a fundamental region for I'. Now we shall apply
this procedure to a minimal convex Wilkie polygon for I, Mp.

We define:
R(MP) = C'Yk’Yk—IC'Yk—l’Yk—2 e ‘07271(MP)‘

Note that every common orthogonal line to two sides v; and ;- cuts Mp in
an arc g;—; joining v; with 4;_; because of the convexity of Mp. Moreover
by straightforward geometrical arguments {p1,. .., #r—1} is a set of disjoint
arcs. This property of Mp allows the operation C.,, 4, _,Cq iy Crpm-
Then R(Mp) is a fundamental region for I' and it is a right angled polygon
with 4(k — 1) sides. See Figures 1 to 5, for the case k = 3.

', e;(

"
Figure 2 - The polygon Q' = @, U e; '(Q2)
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# &

"

Figure 3 - The relabelled polygon C.,-,(Q)

')

Figure 4 - The polygon @, U 6;1(Q2)

Figure 5 - The relabelled polygon C,,., Cy,+(Q) = R(Mp)

61
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3. Hyperelliptic Planar Klein Surfaces and R(Mp).

THEOREM 3.1. Let ' be a NEC group with signature (0; +; [-]; {(), . *.,(9)})
and let Mp be a minimal convex Wilkie polygon. Then D/T is hyperelliptic
if and only if R(Mp) is symmetric with respect to the common perpendicular
of 11 and v;. PROOF. Let D/T behyperelliptic and Mp be a minimal Wilkie
polygon of I'. By [2] there exists a NEC group I'; with [} : ['] = 2 and
signature (0;+;[-]; {(2, 2k,2)}). T is generated by 2k reflections. We may
suppose that these reflections are labelled ¢, ¢, ..., ¢k, ¢k, and satisfy the
following relations

(E,‘E,‘)2=(E,'E,'+1)2=(Ek51)2 =1, (i=1,...‘k—1)
Let R, be the right-angled fundamental region of I'; with 2k sides labelled
Ty B1, + -+, VE, Mk, Where v; and p; lie on the axes of €; and ¢&;, respectively.

Let O be a point in R; congruent by I" to the vertex of Mp corresponding
to an interior point in D/T. Fori = 1,...,%, let v; be the orthogonal line
to v; from O. The side v; is divided by v; into two segments denoted by
¥i and 4;. Then, R, becomes divided into k& pentagons (one of them can
be degenerated to a point if O is in the boundary of Ry). We reflect the
pentagon containing p; in y,, t = 1,... k&, to obtain a new region M with
sides labelled

“ey E,'_l(I/,'), E,"?i) U~ U E,‘(’S’,‘)‘ 6(1/,'), E(I/,'_H), e
Let us observe that
(&,'_lé,')(é,'(lj,')) =é,'_1(I/,') (Z =2‘...,k)
Let e; = ¢k¢1, e; = ¢i—1€;, ¢i = ¢;; we then have the following relations
e1¢] = CrC1€; = CpC161 = C1CxC1 = crey
eiC; = Ci—16;C = Ci—1C;iC; = CiCi—1C; = Cie;

€1 ... = (ékél)(&lég) . .(Ek_lék) =1

Then M is a fundamental region of I. To finish we must prove that M
is congruent to Mp. Let p : D — D/T be the canonical projection. It is
enough to show that the p(v;) are geodesics of minimal length from p(O) to
the boundary components.
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Assume that O 61011. Suppose that [; is a geodesic from p(O) to a
boundary component of D/T" and that the length of I; is smaller than the
length of the corresponding p(v;). Let [; be the lifting of /; to D containing
O. Then I; lies in a hyperbolic line containing O and cutting orthogonally the

sides of v, congruent by [';. Assurne I; = M1UX2U. ..U\, where RtC gt(Rl)

and g¢ € I'; (r > 1 because O ERI). Then !l = /\IUg2 (A)U...Ugrt(X,)is
a polygonal line in R; from O orthogonal to v;. Hence p(!) is homotopically
equivalent to p(v;) and length (p(vi)) > length(p(l)) =length(l;) which is
absurd because p(l) is not a geodesic.

If O is in the boundary of R, the argument is similar bearing in mind that
in this case there exist two minimal geodesics joining p(O) with each bound-
ary component in D/T. Then M may be different from Mp. In any case
R(M) is congruent to R(Mp) because the common orthogonals which are
cut in order to obtain R(M) and R(Mp) both project onto p(p1), ..., p(¢r).

Finally by construction R(Mp) = Ry U & (R,) so that R(Mp) verifies
the condition in the Theorem.

Now, let X = D/T be a planar Klein surface, and let T have fundamental
region Mp with labelling

€1, Y1, €15 €2, Y25 €y «ory €k, Tk, €k

If R(Mp) is symmetric with respect to the common orthogonal p of 41 and
~k, the region R,

Y1, H1, Y2, B2, ey TRy Bk
is right-angled. Let ¢; and ¢; be the reflections on these sides. The group I';
generated by ¢; and ¢; is a NEC group with signature (0; +; [-]; {(2, 2%, 2)})
and it has R, as a fundamental region, because R, U éx(R;) = R(Mp) and
we have [I'; : T'] = 2. Hence D/T is hyperelliptic. 1

COROLLARY 3.2. Assume that D/T is a planar Klein surface that is hy-
perelliptic and that P is a point in D/T' that is not a fixed point of the
hyperelliptic involution. Then Mp is unique up to congruence and the hy-
perelliptic involution is also unique.

We remark that the uniqueness of the hyperelliptic involution for Klein
surfaces is a well known fact (see [3]).

PRrRoOOF. Using the notation of the proof of the Theorem, the p(ui), ¢ =
., k, do not cut the p(v;), 7 = 1,...,k, which implies that the homo-
topy classes of the p(y;) are completely determined by the p(v;). Since the
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p(v;) are geodesics and orthogonal to the boundary components they are
completely determined. Hence the way of cutting D/T in order to obtain
Mp is unique. For similar reasons p(v,),...,p(v) (and hence the hyperel-
liptic involution) are completely determined by p(g1),...,p(pk). B

COROLLARY 3.3. The set of points corresponding to hyperelliptic surfaces
in the Teichmiiller space T of a planar Klein surface with k boundary compo-

. . . ) E—-1)!
nents consists of a submanifold of dimension 2k —3 with (T) connected

Z

components.

ProOF. Let D/T be a planar surface and P a point in the interior of
D/T. Let Mp be a minimal Wilkie polygon for I'. By the same argument
as in Corollary 3.2, the geodesic arcs p(v;) are completely determined and
these arcs give two cyclic permutations, € and €7!, on the set of boundary
components of D/T" : €(C;) = Cj if there exists an arc p(v;) from the
boundary component C; to the boundary component C;. The polygon
R(Mp) can be constructed if we know the lengths of 4(k — 1) — 3 sides
(see [4]). In R(Mp) there are k — 1 pairs of identified sides so it is enough
to know 3(k — 1) — 3 lengths in order to construct R(Mp). The Klein
surfaces admitting a minimal Wilkie polygon inducing the permutations e
and e7! are parameterized by 3k — 6 lengths. Let us call U, the subspace
of T representing such surfaces. The existence of minimal Wilkie polygons
implies that the union of all the U, is T. By Corollary 3.2 there are no points
corresponding to hyperelliptic surfaces in the intersection of two U.. The
condition on the symmetry of R(Mp) in Theorem 3.1 represents the equality
of k — 3 pairs of sides, which implies that the points giving hyperelliptic
surfaces form a submanifold of T of dimension 2k — 3 contained in U,.

(k —1)!
2

Z

There are such Uy, one for each e and ¢7!. 1§

The above result contrasts with the situation in Teichmiller theory for
Riemann surfaces where for genus bigger than 2 the hyperelliptic locus has
infinitely many connected components (see [5]).

The connected components of the hyperelliptic locus in Corollary 3.3 give
just one connected component on the corresponding Moduli space (see [1]).
This fact can easily be proved from Corollary 3.3 using an automorphism
« of a group I' uniformizing a planar surface with & boundary components
which permutes the canonical generators of I' that are reflections (see §1).
Such an automorphism « can be defined in the following way in terms of
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the generators of I defined in §1:
afc)) = 61626;1, afcr) = ¢, ale)=c¢, 1=3,...,k

a(er) = ereze !, alex) = e1, ale;) =e;, i =3,...,k.

The authors would like to thank the referee and the editors for their
comments and suggestions.

References

(1] E. BUJALANCE, A. F. CosTa, S. M. NATANZON, D. SINGERMAN.
Involutions of compact Klein surfaces, to appear in Math. Z.

(2] E. BUJALANCE, J. J. ETAYO, J. M. GAMBOA. Hyperelliptic Klein
surfaces, Quart. J. Math. Ozford (2) 36 (1985) 141-157.

(3] E. BUJALANCE, J. J. ETAYO, J. M. GAMBOA, G. GROMADZKL. Auto-
morphism Groups of Compact Bordered Klein Surfaces, Lecture Notes
in Mathematics 1439 (Springer-Verlag, Berlin, 1990)

[4] J. J. ETaYo, E. MARTINEZ. Hyperbolic polygons and NEC groups,
Math. Proc. Camb. Phil. Soc. 104 (1988) 261-272.

[5] S. KRAVETZ. On the geometry of Teichmiiller spaces and the structure
of their modular groups, Ann. Acad. Sci. Fenn. Ser. Al 278 (1959)
1-35.

(6] A. M. MACBEATH. The classification of non- euclidean crystallographic
groups, Can. J. Math. 19 (1967) 1192-1205.

[7] E. MARTINEZ. Convex fundamental regions for NEC groups, Arch.
Math. 47 (1986) 457-464.

[8] H. C. WILKIE. On non-euclidean crystallographic groups, Math. Z. 91
(1966) 87-102.

Antonio F. Costa and Ernesto Martinez
Departamento de Mateméticas Fundamentales
Facultad de Ciencias

U.N.E.D.

28040 Madrid, Spain



66

An example of an infinite group

M. Edjvet

Dedicated to A. M. Macbeath on the occasion of his retirement

Introduction

The group (2,3,7;q) is defined by the presentation
(0,1 a8, (ab)", [a,B]7).

In [3] it is shown, with the possible exception of ¢ = 11, that (2,3,7;q) is
infinite if and only if ¢ > 9. In [2], using different methods, the same result
is obtained again with this same (but ‘unlikely’) possible exception. In this
note we fill the gap by showing that (2,3, 7;11) is indeed infinite.

The group G*7* is defined by the presentation
(z,y,2 2%, 4%, 2, (zy)°, (v2)*, (z2)", (2y2)*).

It has been observed in [3] that for k¥ = 2q even, (2,3,7;¢) has index 2 in
G*7*. Coxeter has conjectured that G*7* is infinite if and only if & > 18
(it is now known, see [3] and references there, that this group is finite for
k < 17). This note together with the above mentioned results confirm the
conjecture for k£ even. Our approach is to use the curvature argument from
[1] together with the methods of [3]. Indeed our work can be viewed as
an appendix to [3] and we will assume that the reader is familiar with its
contents.
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1. Henceforth P shall denote the presentation (a,b | a%, %, (ad)7, [a, ]! )
and G the group defined by P. Let A and B be the groups C; and Cj
defined by the presentations (a | a®) and (b | b%), and let a = (abd)” and
B = [a,b]''. We show that P is quasi-aspherical over A * B, and so G is
infinite [3].

If P is not quasi-aspherical over A * B then there is a non-empty reduced
connected picture I over P - we show that this is impossible.

Recall briefly that II is a tessellation of S? each of whose corners is
labelled by one of {a,b,67'}. Reading the labels round a vertex or a re-
gion in the clockwise direction gives the label of that vertex or region. An
a-vertex (-vertex respectively) is one whose label is a cyclic permutation
of (ab)” ([a,d]'! respectively). Each vertex of II is either an a-vertex or
a (B-vertex. The corner labels of any particular region in II must all be-
long to either A or B and their product must give the identity element.
The following facts were noted in [3]: it can be assumed without any loss
that each A-region has degree 2; there are always 2 edges joining either an
a-vertex to an a-vertex or a f-vertex to a J-vertex; there are always either
2 or 4 edges joining an «-vertex to a j3-vertex.

Identify all the edges of II that share the same initial and terminal
vertices. This gives a tessellation II' of S? whose regions each have degree
at least 3 and whose labels are equal to 1 in (b | ). It follows further from
the above that

4 < deg(a-vertex) < 7

and 11 < deg(3-vertex) < 22.

Now form I’ from II' by triangulating all those regions A of II' that
have degree at least 4 and contain at least one B-vertex. The method of
triangulation is to pick a B-vertex v of A and insert an edge from v to each
of the other vertices of A not adjacent to v.

It is this tessellation I' we analyse. Our contradiction is obtained via
curvature arguments of the sort used in [1] for example. Give each corner
at a vertex of degree d the angle ZT. The curvature, ¢(A), of a region A of
degree k and whose vertices have degrees d; (1 <7 < k) is then

k
(D)= (2—-k)r+2nm Zdi = am, say. (%)
i=1
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We write ¢(A) = [di, ...,dk; am] to denote this situation.

It follows from Euler’s formula that the sum of the curvatures of the
regions of [ is 4r. What we do is compensate for regions of positive curva-
ture, wherever they occur in I', with negatively curved neighbouring regions,
thus showing that this total of 47 cannot be attained.

In order to conduct our analysis of I" we introduce some notation and
concepts.

In diagrams an a-vertex (f-vertex, respectively) of degree k (I, respec-
tively) is denoted by ® ([Il, respectively). Occasionally we shall omit k and
[ if the degree of the vertex is not needed.

A B-vertex of T of degree 11 can be adjacent only to a-vertices. Such a
vertex, together with its 11 adjacent regions is called a S-wheel:

Figure 1
The following observations will be useful in what follows:
(a) pB-wheels consist entirely of 3-gons;
(b) if two B-vertices are adjacent (in I') then both have degree > 11;
(¢) if Ais aregion of I' of degree > 3 then c¢(A) < 0;

(d) in passing from II' to T it is possible to create a new region of posi-
tive curvature as the diagram below illustrates, and we must take this into
account when compensating;
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Figure 2

(e) any a-vertex of I' of degree 5 is adjacent to at most 3 other a-vertices.

2. In this final section we list the possible regions of I" of positive curvature
and indicate the compensating regions.

If A is a region of I of positive curvature then deg A = 3 and ¢(A) is
one of the following:

[4,4, k2] (k>12)

[4,5, k3 - %] (12<k<20)

[5,6,7

[5,6,6: %]

[5.5,7: %5 ]

[5.5,6:35 ]
and [5,5,5,—5-].

S 305 |

There are two types of region of positive curvature; those that share an
edge in I with a 8-wheel W and require W to compensate for its positive
curvature — a so-called satellite of W, and the rest that are not satellites of
any B-wheel. We deal first with the latter type.

In what follows we list the possible ways a region of I" of positive curva-
ture can occur. Note that a compensating face P of negative curvature can
be required for at most two regions of positive curvature and accordingly
contributes 3 c(P) on each occasion. We will indicate when only §¢(P) is
being used.



70 Edjvet

(i) (4,r,k) (4<r< 5)
() < [4,4,12, %]
A; is compensating region

o(Ay) < [4,12,12,- %]

(ii) (5,ri,r2) (5<r; <6, 6<rp, <)
(D) < [5,5,6; % ]
A, is compensating region

o(Ar) < [5,12,12; 42 ]

Use only half of ¢(A;) to compensate.

(iii) (5,r,7) (5<r<6)
o(A) < [5,5,7; 3% ]

' 35

A, is compensating region

o(Ay) < [5,7,12; 312 ]

(iv) (5,6,6)
Assume that k£ > 11.
(D) = [5,6,6;%]

A, is compensating region

() < [5,6,12 —llo] Figure 6 - (iv)



Example of an infinite group 71

(v) (5,5,6)

We know one of ks, k3 must be at least 12;
let k3 > 11. Assume that at least one of
ky, ko is greater than 11, and use the
corresponding region A; or Ag

to compensate together with Aj.

(D) = [5,5,6; 2 |
(&) < [5,5,12 5]
o(B2) < [5,6,12; 55 |

To

o(As) < [5,6,12, — X |

(vi) (5,5,5)

{8 = §

A, and A, are compensating regions.
c(Ay), c(Az) < [5,12,12; -4

Use half of each of ¢(A;), ¢(As).

(vii) (5,5,5)

«(8) = %

A; (1 £1¢ < 4) are compensating regions.
(A1), e(A2) < [4,12,12; - %]

c(ADs), c(Ag) < [4,5,12; %] Figure 9 - (vii)




72 Edjvet

(vii) (5,5,5)

Assume each a-vertex has degree > 5.
Assume each -vertex has degree > 12.

o(A) = §

A; (1 £i < 9) are compensating regions.
(80 < [5,5,1%-5]

Use all of ¢(A;) (1 <5 <3).

Use half of ¢(A;) (4 <1<9). Figure 10 - (viii)

We now list all possible satellites in T".

1 (5) 11

(S1) o(8) = &

15

A is a satellite of 2 G-wheels and
contributes 35 to each.

(S2) o(A) = 2=

5
AA; is compensating region.
oA1) < [5,6,12 -5 ]

A is a satellite of 2 8-wheels and,
with A; compensating, contributes

1 (2m T\ _ ™
at most 5 (15 — 10) = 3o to each.

($3) () = ¥

A is a satellite of 3 S-wheels and
contributes ¢ to each. Figure 13 - (S3)
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(S4) (&) =

A;(1 £7 £ 3) are compensating regions.
c(A) < [5,5,12; 35 ]

Use all of ¢(A1) and half of each

of ¢(A2) and ¢(A3) to compensate.

A is a satellite of 2 B-wheels and contributes

1 _
a net total of; (15'- _3L0) — 45 = 15 to each.

(S5) «(8) = §
o(bi) < [5,5,12; 57 ]

Use all of ¢(A1), ¢(A2) and half
of each of ¢(A;) (3 £ j £ 6) to compensate.

A is a satellite of one S-wheel and contributes

anet total of T — X — 1 (21) = & ¢ it Figure 15 - (S5)

Let W be a B-wheel with at least one satellite. The total curvature of
W together with its satellites we denote by ¢(W). We finish by showing
that o(W) < 0.

Observe that ¢(W) < 11 [5, 5,11; —%] = —% and that if we change the
degree of an a-vertex of W from 5 to 6 then C(W) is altered by 2(—7%),
whereas the maximum positive contribution to C(W) is 2(35) in the case of
two satellites of type S1. The net effect on C(W) is therefore negative, so it
can be assumed without any loss that the satellites of W are of type S3, 54
or 55.

If W contains an a-vertex of degree 6 then ¢(W) < —F—2f = —Z_ Now

by assumption W has at most 5 satellites and so C(W) <-%+5 (%) =0.

If every a-vertex of W has degree 5 then, given that W has at least one
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satellite, any attempt at labelling shows that the following situation must
occur.

In this case we add ¢(A;) to C(W) by way of compensation to obtain a
curvature of at most

11[5,5,11;—&] +5 (%) + [5,12,12;—41] <0.
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Moduli of Riemann surfaces with symmetry

G. Gonzalez-Diez and W. J. Harvey

To Murray Macbeath on the occasion of his retirement

The moduli space M, of Riemann surfaces with genus ¢ > 2 contains
an important subset corresponding to surfaces admitting non-trivial auto-
morphisms. In this paper, we study certain irreducible subvarieties M (G)
of this singular set, which are characterised by the specification of a finite
group G of mapping-classes whose action on a surface S is fixed geomet-
rically. In the special case when the quotient surface S/G is the sphere,
we describe a holomorphic parameter function A which extends the classical
A-function of elliptic modular theory, and which induces a birational isomor-
phism between the normalisation of M4(G) and a certain naturally defined
quotient of a configuration space C* — A where A is the discriminant set
{zi = z;, for some ¢ # j}. Thus My(G) is always a unirational variety.
We also show that in general M (G) is distinct from its normalisation, and
construct a (coarse) modular family of G-symmetric surfaces over the latter
space.

1. Teichmiiller spaces and modular groups

First we introduce some of the necessary formalism. Let Hy be a subgoup
of the group Aut(So) of automorphisms of a closed surface Sy of genus g > 2;
by a famous theorem of Hurwitz (see e.g. [19]), Aut(So) is finite of order at
most 84(¢g — 1). We shall later concentrate on the case where the quotient
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surface So/H, is P!, the Riemann sphere, but results in §1 and §2 apply
without this restriction.

DEFINITION. A Riemann Surface with Ho-symmetry is a pair (S, H) com-
prising a Riemann surface S with H < Aut(S) such that (So, Hy) and (S, H)
are topologically conjugate by some homeomorphism §: S; — S.

Two surfaces (S, H), (S', H') with Hy-symmetry are Hy-isomorphic if
there is a biholomorphic mapping ¢: S — S’ such that H' = ¢ H¢ .

NOTATION. An Hj-isomorphism class is denoted by {S,H} and the set
of all Hy-isomorphism classes of surfaces with Hy-symmetry is denoted by

Mg (Hy).

We shall also need to consider the weaker equivalence relation of (non-
equivariant) isomorphism for surfaces (S, H), (S', H') with Hy-symmetry;
here there must be a biholomorphic mapping ¢ : S — S’ as before, but it is
no longer required to satisfy the condition H' = ¢ H$~'. We shall denote by
M 4(Hy) the set of all isomorphism classes of surfaces with Hy-symmetry.

There is a natural surjection A’—/T;(Ho) — My(Hp) between these two
sets. Qur primary purpose is to provide complex analytic structures for
them which make this mapping a morphism of analytic spaces. Our ap-
proach rests on well-known results of Teichmiiller theory which we now
discuss briefly. Good references for the facts we need are [9], [22]. More
details of our methods are given in earlier papers [14, 20].

Let Ty be the Teichmiiller space of Sy. A point ¢t € T, is an equivalence
class [S, 4], where 8 : Sy — S is a marking homeomorphism, and two marked
pairs (S,0), (S',0') are equivalent iff there is a biholomorphic f : S — 5
such that €' is isotopic to f o 6.

If b= {b1,...,b,} is a finite subset of Sy, and S§ = Sy — b denotes the
surface punctured at b, then the (stronger) equivalence relation obtained by
requiring the isotopy between §' and f o § to fix the points of b determines
the Teichmiiller space T ,, of S5, n > 1.

The group of mapping classes Mod(Sy), viewed as the path components
of the group of homeomorphisms of Sy, is denoted Mod, if Sy has genus g
(or Mod, » for Sg). This group operates on T, (or on T ) by the rule

(S, 0] - S, 6o f]
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By fundamental results of Bers [3], there is a canonical representation of
each Ty » as a bounded domain in some CY, with N = 39— 3+ n. Further-
more, the action of Mod, , is by holomorphic isomorphisms and properly
discontinuous [18], [20].

We shall regard a subgroup Hy C Aut(Sy) as tantamount to a subgroup
of Mod(Sy), since by a theorem of Hurwitz an automorphism of Sy that
is homotopic to the identity must be trivial. By a result which goes back
to W. Fenchel and J. Nielsen, the fixed point set in T of any such finite
group G C Mod(Sp) is a (complex) submanifold denoted by T,(G).! In the
present terminology it was reformulated in [14] as follows.

THEOREM A. T,(H,) is the set of Teichmiller points [S, 6] such that S
possesses a group of automorphisms H conjugate to Hy by means of the
homeomorphism 8: Sy — S.

Because the action of the modular group on T is properly discontinuous,
the quotient moduli space M, carries an induced structure of complex
analytic V- manifold, for which the canonical projection map p: T, — M,
is holomorphic. In fact M, is a projective variety; it is worth noting that
the A-functions which we describe later fit in naturally with the projective
embedding originally constructed by Baily [1] using Jacobi varieties and the
Lefschetz embedding theorem.

COROLLARY. M ,(Hy) is the image of Ty(H,) under the projection p.

The submanifold Ty(H,) is itself a Teichmiiller space. To see this, let
the quotient surface Ry =So/H, have genus v, let b= {b,,...,5,} be the
point set over which the projection So — Ry is ramified and denote by T,
the Teichmiiller space of the punctured surface R} = Ry — b.

For each (S, 6] € T,(H,), write R for the quotient surface S/H and R*
for the corresponding unramified subsurface. Then 8 : Sp — S induces a
homeomorphism 6* : R} — R*, which defines a rule

(5,6] -5 [R¥, 6%).

At the level of Teichmiiller spaces, this is a bijection.

1 The fact that T,(G) is non-empty for all finite G was proved by S. Kerckhoff [17].
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THEOREM B. The spaces Ty(Hy) and T, , are biholomorphically equivalent
via the mapping .

For a proof, see [18], [14], [23].

Not every element in Mod, stabilizes Ty(H,). The modular group per-
mutes the various finite subgroups Hy by conjugation and the relevant group
for our purposes is the relative modular group with respect to Hy, which is
defined as the subgroup of those mapping classes that do stabilise T (Hp);
this is the normaliser of Hy in Mod, (see[20]). We denote it by Mod,(Hp).

For each [S, 0] € Ty(Ho) with a marked symmetry group H = 6Hy671,
the rule [S, 0] — {S, H} defines a mapping from Ty(Hy) into M 4(Ho) which
we shall denote by 7;. This map is clearly surjective.

Let f be an Hy-equivariant homeomorphism of Sy representing an ele-
ment f of M (H,). Then £([S,6]) = [S, 6 o f] has marked symmetry group
Hy, obtained via Hy = (6o f)Ho(6o f)~' = 0Ho6~'. Notice that the un-
derlying Riemann surface S and its automorphism group H are unchanged:
the change of marking by f induces a complementary change of marking for
H. This implies that the images under 7, of [S,6] and £([S, §]) coincide in
My (Ho).

Suppose now that we have two pairs (51, H,), (Sz, Hz) of surfaces with
Hy-symmetry, related by a biholomorphic isomorphism ¢ : §; — Sz such
that Hy = ¢H1¢ 7. Choose two markings 6, : Sy — S;, j = 1,2, so that
each [S;, H;] is a Teichmiiller point in Ty(Hy) lying over {S;, H;}. Then
there is a homeomorphism f: Sy — Sy making the diagram

01
S() _— Sl

r| K

0,
So —— S,

commute and compatible with Hy(= G;IH]-GJ-). Therefore f determines an
element of Mod,(H,) and we have proved the following statement.

PROPOSITION 1. The mapping m : Ty(Hy) — /\’—/T;(Ho) induces’_zlnatural
bijection between the quotient space Tg(HO)/MOdg(Ho) and M y(Hyp).

Since T;(H,) =T, ; is a bounded domain in C™ where m = 3y -3+,
it follows that M (Hy) is a complex V-manifold of dimension m.
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2. The relationship between /\F/Tg(Ho) and M (Hp).

The first aim of this section is to prove that A’—Z;(Ho) is the normalisation
of My(Hy). We shall use [11] as a basic reference for analytic spaces.

THEOREM 1. M (H,) is an irreducible subvariety of M, and A’—Z;(Ho) is
its normalisation.

PROOF. Because Mody(Hy) acts discontinuously with finite isotropy groups
on Ty(Ho) & T,, a domain in C™, it follows from a theorem of Cartan
[4] that M (H,) is a normal complex space. Also, by the discontinuity of
Mod, on Ty, the family of submanifolds {h(Ty(Hy)), h € Mod,} is locally
finite, that is each point of Ty(Hy) has a neighbourhood in T, intersecting
only finitely many distinct subvarieties h(T,(Hy)).

We have already defined the natural mapping : A7;(Ho) — M, whose
image is precisely My(Hp). Thus if we check that:
(1) 7 is closed,
(2) 7 has finite fibres,
(3) 7 is injective outside a proper subvariety,
then by the Proper Mapping Theorem and the definition of normalisation
the theorem will be proved.

Let us prove (2) and (3). The diagram below summarises the situation;
the map m, = mom : Ty(Hy) — My(Hy) is the restriction of p to Ty(Hy).

Tg(HO) g

T
My(Ho) —— My(Ho) —— M,

Two points in Ty(Hy) with the same image in My(Hy) are of the form
[S, 6] and [S, 8 o h] with h € Mod,. By Theorem A, H = §Hy0~! and
H' = (6o h)Hy(f o h)™! are both subgroups of Aut(S). Now, if [S, 4] and
[S, 6 o h] have different images in A’—Z;(Ho), then h ¢ Mod,(H,) and so
hHoh™! # H,. Hence necessarily H # H'. Since Aut(S) is finite, there are
only finitely many possibilities for [S, 6 o k], which proves (2).

This argument also shows that = fails to be injective only on the ;-
image of intersections Ty(Ho) N h(Ty(H,)) with h € Mod, — Mody(Hy).
By the local finiteness this is a subvariety of M 4(H,), which proves (3).
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For completeness we sketch the elementary property (1). Referring to
the diagram above, it is suflicient to prove that if C is a closed subset of
Ty(Hy) then my(C') is closed in M (H,) or, equivalently, that the union of all
h(C), h € Mod,, is closed in T,. Suppose that y = limh,(z,) with z,, € C
and h, € Mod,. Taking N, a small enough open set in T containing y
such that Ny intersects only finitely many sets h(C), there is then a single
set ho(C') which contains an infinite subsequence of the {h,(z,)}. Thus we
have a sequence of points z}, € C with hg(z},) — y. But Ty(Hy) is closed
in Ty, and hg is an isometry in the Teichmiiller metric, so it follows that
z!, — z € C. This completes the verification of the property (1). 1

We next address the question whether A7;(H0) is biholomorphic to
My(Hy). From the proof of the theorem we can see that these spaces
are different if and only if there is a surface S whose automorphism group
contains two subgroups H, H' that are conjugate topologically but not holo-
morphically. This situation occurs, for instance, when there is a surface S,
which admits a larger group G of automorphisms containing a pair of (con-
jugate) subgroups H, H' such that (H,H') = K is a proper subgroup of G
with H, H' not conjugate in K. Usually a deformation of S may then be
constructed which preserves the K-symmetry but destroys the G-symmetry.
Examples are readily produced using the fact that for any finite group G
there exist Riemann surfaces S with G as a group of automorphisms and
such that the quotient surface S/@G has arbitrarily given genus v; see for in-
stance [12]. An elementary example of this type is given later in this section
(example 1).

Provided that the Teichmiiller space Ty(K) is not a point (the case Tp 3)
and is notin the small list of types for which there is an isomorphism between
Teichmiiller spaces of surfaces with different signatures, we may conclude
that the space T,(G) is properly contained in Ty (K') for any proper over-
group G > K. This list is as follows (see [22] p.129 for details):

Toe =Ty, Tos =T, Toa=Th).

The implication is that in general the locus of points [S,6] € Ty(I), with
S admitting two automorphism groups 8 H6~! and §H'6~! which are con-
jugate only in some larger group than § K6~! forms an analytic subset Z
of strictly lower dimension. Therefore the restriction of the mapping = :
A7;(H) — M,y(H) to the 7 -image of Ty(I) is not injective since outside
71(Z) one has 7 ([S, H]) = n([S, H']). Thus 7 is not biholomorphic, and the
variety M (H) is non-normal at all points in the image of 7, (T (K) — Z).



Moduli of Riemann surfaces with symmetry 81

Furthermore, using elementary facts on analytic spaces, we can conclude
that since this subset of the non-normal points of M ,(H) is Zariski-open in
My(K), and therefore dense, the whole subvariety My (K) = 7 (T,(K) is
non-normal because the non-normal set is necessarily closed ([11], p.128).

These arguments prove the following result.

THEOREM 2. The modular subvariety M,(Hy) is in general distinct from
its normalisation M ,(Hy).

As illustration, we give two examples.

EXAMPLE 1. Let Fy, be the compact (Fermat) Riemann surface with affine
algebraic equation

x2p+y2p___1,

let H (respectively H') be the cyclic group generated by the involution
(z,y) — (—=z,y) (respectively by (z,y) — (z,—y) ) and let K = (H,H').
Then H and H' are not conjugate in K but in G = Aut(F3,) they are
conjugate by the automorphism «(z,y) = (y,z). Now F2p/[ has genus
> 2; in fact F2p/ K is isomorphic to the surface F}, with equation 2? +y? = 1,
the isomorphism being given in affine coordinates by ¢(z,y) = (z2,y%); F,
has genus (p — 1)(p — 2)/2 which is > 2 for p > 4.

Thus, by the discussion preceding theorem 2, the modular subvariety
My(H), g = (p—1)(2p — 1), is not normal; in fact the point representing
the Fermat surface F3, is a non-normal point of this modular subvariety.

On the other hand, for certain types of surface with automorphism, the
modular subvariety M (H) s itself normal.

EXAMPLE 2. Let S be a hyperelliptic surface of genus ¢, with J: § — S

the hyperelliptic involution. Since J is the unique automorphism of S with
order 2 having quotient S/(J)= P!, we obtain M ((J)) = M,({J)).

REMARK. Since M, is a projective variety, the G.A.G.A. Principle im-
plies that our complex-analytic results remain valid within the framework
of complex algebraic geometry. Thus M (G) is also an irreducible algebraic
subvariety of M, by Chow’s Theorem ([11] p.184). Furthermore, since the
algebraic normalisation of a projective variety is again projective ([13] p.232)
and therefore analytic, it follows from the uniqueness of the normalisation
([11]) p.164) that /\7;((}') is also the algebraic normalisation of M ,(G).
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3. The case of tori: Legendre’s modular function.

We review the classical theory of moduli for elliptic curves from the
point of view developed in the previous section. In genus 1, the Teichmiiller
space T is the upper half plane U: any Riemann surface of genus 1 may
be expressed as a complex torus E = E, = C/A(r) with A(T) =2 + Z7 a
lattice subgroup of the additive group C and v € U. There is a standard
involutory automorphism J : E — E, given by the symmetry z —» —z of C
and so, writing H = (J), we have that Ty(H) = T;. The quotient E/H is
the projective line P! with four ramification points ay, ..., a4 corresponding
to the four fixed points of J (which are the points of order 2, the orbits of
0,%,*E%, and § under A(7)).

Let the orbit of the origin 0 be chosen as a base point of E and write
Ty, for T(E — 0): this procedure renders the (flat) homogeneous space
E into a hyperbolic surface, thereby placing the theory of moduli for E
within the framework of Teichmiiller spaces. Theorem B now captures the
identification of T-spaces, T}, = Tp 4, in our earlier list.

This space may be identified with the upper half-plane U by associating
to 7 € U the Teichmiiller pair [E., f;], fr: E; — E., where E; = C/A(1)
has been chosen as reference surface and f, is the projection of the real
linear homeomorphism L, : C — C which sends 1, : to 1, 7 respectively
(see e.g. [22] 2.1.8).

Similarly the fact that T ;(H) is the whole of T ; implies, by the defi-
nition of relative modular group given in §1, that Mod,(H) is the modular
group of genus 1, SL(2,Z), so we have

M(J)=M, =U/SL(2,2) -

at +b a b
o where A = c d
with [E;, f;] and A with the homeomorphism f4 : E; — E; characterised by
the real-linear map L4(1) =ct+d, La(z)=ai+b. Then the Teichmiiller

modular group acts by the rule

Here SL(2,Z) acts by A-7 = . We identify r

fa-(Er,fr)=(Er,frofa)=(Ear,hao frofa)

where h4 : E; — E 4., is the isomorphism induced by ha(z) = (e +d) 2.
To see that this is a genuine group action, one checks directly that h 40 f;0f4
is just fa.r, so we have f4-(E;, fr) = (Ea.r, fa.r) as it should be.
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Next we focus attention on the level-2 congruence subgroup I'(2), com-
prising matrices A = Id (mod 2) in SLy(Z). The involution J corresponds

to the central element ( _01 _01 ) of I'(2), which fixes every point of U.

The quotient group PTI'(2) acts faithfully on U and (see for instance [5], [16])
this action is free and discontinuous. In classical vein, we define a complex
function A on U by the rule

A7) = {p(ar), p(az); p(as), p(ad) },

where p(z) = p-(2) is the Weierstrass p- function of the lattice A(7) and
{-,-;-,-} denotes cross-ratio; X is the Legendre modular function, which is
automorphic with respect to PI'(2) and induces an isomorphism

A: U/pr(2) = C—{0,1}.

The famous modular invariant j(7) may then be written as an invariant
(degree 6) rational function of A.

We shall need the following description of this classical theory in terms
of the universal family E of tori over U; a brief account appears in [26].
This is a fibre space E = (U x C) /72 over U where Z? acts on U x C by
(n,m)-(7;2) = (752 + n + m7), so that the fibre over 7 is precisely E..

Corresponding to the four fixed points of J, we have the following four
holomorphic sections of the family E — U,

1471

: ss(r)=—%—  salr) =

s1(7) =0, so(7) =

DN J =

R

By normalising the p-function we obtain a meromorphic function z(r, z) on
E which when restricted to each fibre gives rise to a function z, : E, — P!,
having these four points as branch points and with corresponding branch
values

zr(s51(1)) =00, z,(s2(7)) =1, a-(s3(7))=0, z(sa(7))=A(7).

Finally, the congruence group I'(2) can be characterised as the group
of matrices A such that the corresponding mapping classes f4 introduced
above preserve each of these four points; and SL(2, Z)/I‘(2) is isomorphic
to the subgroup stabilising s; of the symmetric group 24 which permutes
the {s;}. This description will become relevant later on.



84 (Gonzdlez-Diez and Harvey

4. Moduli of Galois coverings of P!: higher genus A-functions.

In this section we generalise the preceding one to the situation where
mstead of the elliptic involution one has a surface Sy of genus ¢ > 2, pos-
sessing a group of automorphisms Hp such that the quotient surface is P!.

Let S be a Riemann surface occurring in Tg(Ho) with automorphism
group H as in §1; thus the projection S — S/H = P! is ramified over
points b;,...,b, € P. We assume that r > 4, so that Ty(H,) has dim> 0.
Let 8 be the unique Mdbius transformation which sends by, b2, b, to 0,1, 00
respectively. The A-function we shall associate to S is defined by

A =Bog(br—1), -y Ar—z = B0 P(d3).

To make this definition unambiguous, we shall proceed more formally by
considering the Teichmiiller curve m: V; — T,. This is a holomorphic fibre
space over Ty whose fibre over a point t = (5S¢, 6;) € T, is a Riemann surface
S; homeomorphic to Sg. The group Hy also acts as a group of biholomorphic
self-mappings of V;, and the fibre S; over each point of Ty(Hy) is preserved
by Hy: the action of Hy in the fibre S; is obtained by conjugating Hy with
the homeomorphism 6; : So — S; to obtain the group H; = 6, Ho0,".

We write Vy(H,) for the restriction of the Teichmiiller curve lying over
Ty(Hy). Our aim now is to construct a holomorphic morphism @ from the
family V,(Hy) onto Vo,r, the Teichmiiller family of r-fold pointed spheres,
which restricts on each fibre of 7 to the projection ¢, : S; — P} = Si/H,.
This requires an enumeration of the ramification points of the ¢, that de-
pends analytically on t € T,(Hy). To this end we reformulate Theorems A
and B as in [14] in terms of uniformisation and Fuchsian group theory. We
use as reference point the surface Sp = U /T, with automorphism group Hy,
so that there is an exact sequence of groups

(4.1) 1—Ty 5T — Hy —1
with I" Fuchsian, cocompact and given by the following presentation:
F=(Xy,....X;: XiXo... X, =1d, X;V = Id);

here the X; are elliptic Mobius transformations of U of order nj, each
fixing a point whose I'-orbit is a ramification point b; of the projection
b0 : So — P! = U/T. The inclusion ¢, : T(I') — T(I'y) identifies the
image set T,(H,) with the space T(T") & Tj , as in Theorem B of §1, and
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there is a corresponding identification between the Bers fibre space Fy(Hy),
which is the universal covering of V,(Hy), and the Bers space F(T') for
V(I‘);2 note that V(I') = Vo,r- Following the methods of Bers, Earle and
Kra, we observe that the operation of conjugation by any generator X
defines an automorphism «; of the space F(I'). Each «;j lies in the extended
modular group, mod[', defined by lifting to F(I') the action of ModI" on
V(T'); an exact sequence

(4.2) 1 —T — modl' — ModT"' — 1

describes the relationship between these groups (see [7], [22] for more de-
tails). Because this action is holomorphic the fixed point set of («a;) is a
complex submanifold A; of F(T") identified with F,(Hy) as above. Further-
more Aj; intersects each fibre Uy = §t of the Bers fibration 7 : Fy, — T,
lying over ¢t € Ty(H,) transversely in precisely one point — the fixed point
of the deformed group element X;(t) € I'; acting on U;. This permits us
to define a marked set of r disjoint sections s,(¢),...,s,(t) of the family
V(T') — T(T), which induces a rule for labelling the ramification set

b, = {s1(t),...,5.(1)} C P} for ¢t € Ty(Hy).

and a mapping ® : V,(Hy) — Vo,r as desired. It follows from our construc-
tion that ® is Hy-invariant.

PROPOSITION 2. The mapping ® induces a biholomorphic isomorphism of
Teichmiiller families between Vy(Ho)/H, over Ty(Ho) and Voyr over Tp .

PROOF. By the theory in [7] of holomorphic sections of V(T') — T(T), it
follows that ® is holomorphic and locally injective. Surjectivity is shown by
constructing for each point of V , via the ramification data of & : Sp — Ry
an essentially unique representation of a marked Riemann surface over P!,
which lies in the space of quasi-conformal Fuchsian deformations of the
sequence (4.1). Passage from local isomorphism to global, valid because
T,(H,) is a cell, completes the argument. 1§

Next we employ the Mobius action of the group PSL2(C) on P! to
transform V), into the biholomorphically equivalent family of r-pointed
spheres over the base Ty , where each fibre P! has 5; =0, s, = 1, 5, = 00.
Let z; denote the normalised co-ordinate function obtained from the map @
by restriction to the fibre over {: here we emphasize again the relationship

2 although V(T') and V,(H,) are different
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with the (§3) elliptic curve case, where ¢ = z, is the affine variable for the
Legendre normal form

y?: = z(z — D)z — X)), A= A(7).

We can now introduce the higher genus A-function associated to (Sp, Hp).

DEFINITION. The functions A; : T,(Hy) — C —{0,1} are given by the rule
/\j(t) = z¢(sr—j(1)), 7j=1...,r—3.

They determine a holomorphic function A whose image lies in 2773, the
complement in C"~2 of the normalised diagonal subset

A, ={X;=0o0r1, for some j} U{X; = X;, 1 # j}.

In fact, the above construction of the map ® has a further implication.
PropPOSITION 3. The function A is surjective.

PROOF. Given a point w € C"3 with w; # 0,1 and w; # w; let P, =
C—-{0,1,w;,...,w,—3} and let S = S, be the Riemann surface obtained
as the covering of P; smooth over P, and ramified at each excluded point
according to the data of the covering ¢ : So — So/H, & P! together with
the bijection (implicit in the discussion above) between the excluded set
and the ramification subset b of So/H,. Then there is a homeomorphism
8 : So — S which furnishes a marking and determines a point t = [S,6] €
Ty(Ho) whose A-image is w. 1

Recalling the definition (§1) of the relative modular group Mod,(Hy),
we apply the isomorphism described in ([20],§4) to identify this group, in
the context of (4.1), with a subgroup of the algebraic modular group OutT.
Each Hy-symmetric mapping class determines a class of homeomorphisms of
U, compatible with the group I', and inducing an automorphism of I which
preserves the subgroup I'g defining the surface S;. The group I' contains
all the lifts of elements of Hy to U, the universal covering of Sy, and there
is, analogous to the sequence of groups in genus 1

1 — (J) = SLy(Z) — PSLy(Z) — 1,
an exact sequence for Mod(T',T'y), the effective relative modular group,

(43) 1 — H() — MOdg(H()) — MOd(F, Fo) — 1.
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which is operating on T'(T"). Thus Mod(I",T'¢) C ModT.

Regarding activity in the (isomorphic) space Ty » we let Py, denote the
subgroup of pure mapping-classes in Mod, ., which are those fixing each
of the r distinguished points of P!. This group, which forms the analogue
of the group PI(2) = T'(2)/(J) from genus 1, regulates construction of
modular families of coverings of P! ramified over r points.

PROPOSITION 4. Py, 1s isomorphic, via the identification of Proposition 2,
to a subgroup Py(Hgy) of Mod(T',Ty).

PROOF. By covering surface theory, each mapping class in P, can be
lifted to a mapping class on the surface S; any two liftings are related by
composition with the Galois group Hy of Sy — P!. A lifted homeomorphism
is homotopic to an element of Hy if and only if the original map is the
identity on P'. The result now follows from the exact sequence (4.3). 1

We are ready to establish the crucial property of the A-function.

THEOREM 3. The function A is automorphic with respect to the group
P,(Hy) and induces a holomorphic isomorphism between Tg(HO)/Pg(HO)
and Q73,

PRrROOF. The space Ty, is a cell and the function A : Ty(Hy) — Q3 is
surjective, holomorphic and non-degenerate. It follows that A is the univer-
sal covering projection, and tracing through the definitions one finds that
the group P,(Hy) is the Poincaré representation of m;(2"~3) acting on its
universal covering. 1

NOTES. 1) An alternative proof follows from that of Theorem 5.6 in [10].

2) Closer study reveals a connection between P;(Hy) and the braid
groups B.(P') and B,(C). In fact there is a surjective homomorphism from
Artin’s braid group B, = m;(C" — A) to P,(H,), which factors through the
well-known homomorphism onto B,(P?).

Next we construct a holomorphic family of Riemann surfaces, with base
the finite covering AA/T’;"TE(HO) of A7;(H0) associated with the pure modular
subgroup P,(Hy), whose fibres exhibit the ramification characterised by the
model covering So — So/H,. This family will therefore carry the distin-
guishing mark of a coarse modular family for Hy actions: every Riemann
surface with symmetry group topologically conjugate to Hy is represented at
least once and at most m = m(H,) times, where m is the index of P;(Hy)in
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Mody(Hy). As a preliminary, denote by Co , the family of r-pointed projec-
tive lines P! over 73,

THEOREM 4. There is a holomorphic family C4(Hy) over the manifold
Mﬁ"re(Ho) and a morphism of holomorphic families C4(Hy) — Co,, with
the property that, over each point [S, Hy] of /W’Z"”(Ho), the fibre of the
family C4(Hy) is a Riemann surface isomorphic to a Galois covering of P!

with group Hy and unramified over P, where w = A(t), in the fibre P! of
Cor.

PROOF. We operate within the extended action of modTy on F(T'g). The
total space C4(Hy) will be achieved as the quotient of the fibre space V(Hy)
by the action of Py(Hy), obtained by lifting from the base Ty(Hy); this is
seen more clearly as the result of first lifting Py(Hjy) to a subgroup of mod T
acting on Fy(Hy) and then passing to the quotient V,(Hy) via the action of
['y. Therefore, parallel with the sequence (4.2), we have a sequence

(4.4) 1 — Ty — P,(Hy) — P,(Ho) — 1

and the middle group acts discretely and without fixed points on F,;(Hy), to
produce a quotient manifold C,(Hy). This is fibred over /W’Z"”(Ho) ~Qr3
with fibres the compact genus ¢ surfaces S; =2U:/T",. The mapping & of
Proposition 2 furnishes the rest of the statement. 1

NOTES. 1) From this viewpoint, the finite group Hy acts holomorphically
fibrewise on the complex manifold C,(H,) with fixed point sets given by
the Hg-orbits of the r disjoint codimension-1 complex subvarieties, each
isomorphic to the base manifold MQ"TE(HO) or a finite cover.

2) [If instead of P,(H,) one employed the full relative modular
group, Mod,(H,), the result would no longer be a family of genus ¢ surfaces
over the corresponding base variety M (Hp). This situation occurs already
in genus 1 [26].

The particular case in which Hy = Z,, is of prime order was thoroughly
analysed in [10] using the theory of the Riemann theta function. That
approach works equally in the present situation with certain modifications.
We describe this alternative, more explicit, construction of the A function
briefly, as a concrete illustration of the relationship between special values
of the Riemann theta function and the uniformisation of this particular type
of Riemann surface.
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By the Bers construction of the holomorphic bundle over T, of abelian
differentials, it i1s possible to give a Teichmiiller space formulation of the
period mapping, which associates to a marked Riemann surface its pe-
riod matrix in the standard normalisation, as a mapping into the Siegel
space &, equivariant with respect to the actions of Mod, and the symplec-
tic modular group Sp(2¢,Z). A fundamental result of Earle [6] exploits
the notion of Riemann constant to produce a holomorphic embedding of
the Teichmiiller-Bers universal curve V; into the holomorphic fibre space
J(Vy) of Jacobi varieties which results from pulling back to T, the fibre
bundle of complex tori defined over &,. Each projection ¢, : Sy — P!,
t € T,(Hy), determines two ramification divisors, b; on P!, B, on S;, such
that B, = ¢;'(b;), with every point s;(t) € b, yielding an inverse image
set ¢y ' (si(t)) = {Bi(t), k = 1,..., £;} where ¢; divides the order of Hy
and each point Bji(t) occurs with multiplicity n; = n/¢;. Thus we have a
prime decomposition, suppressing dependence of the By on ¢,

£;
B, =B -B;*--- B with B; =[] Ba

k=1

Now it is possible to choose (see [10] for an explicit procedure using the
ramification set if Hy = Z,) a degree (¢ — 1) divisor D, on each surface
[St] € Ty(H) so that all the products Big - Dy, 1 = 1,...,r, are non-special
on every Si. Note that the divisor D; may not in general be supported
in the ramification set of the group Hy, as in [10], proposition 2-1, but
a holomorphic choice of Bj; - D, can be made, since the (degree ¢) special
divisors on S are a subvariety of the symmetric product S of codimension
at least 2 ([21], p. 155). This leads, via the embedding in J(V;) of these
product divisors and the vanishing properties of the corresponding Riemann
theta functions, to the following alternative version of Proposition 2, which

provides a definition of the basic z-co-ordinate function on the family of
surfaces V,(Hp).

PROPOSITION 2/, There is a collection of rational theta characteristics
[aik, aii), [bik, bi,), one for each Bjx in the ramification divisor B;, such
that the meromorphic functions ¢; : V,(Hy) — P! defined by

£

$ilt,z) = H{ﬂ [ZZ:](t’Z) /,9[22';](t,z)} i=1,...,r—1

k=1

determine on each fibre S; a function whose divisor is %i(t)/%r(t). The
normalised z-coordinate function on V,(Ho) is then  [$1/¢,(s2(2))]" -
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In the same way as before, one may then produce a A-function on Vi, (Hy),
which is given by quotients of powers of special values of Riemann’s theta.
It is more problematical, though theoretically possible, to produce a precise
algebraic equation for V,;(Hy) as a family of plane curves; for this one needs
to construct a companion y-co-ordinate function with coefficients rational in
the A-variable. As a final comment on this approach, the matter of deciding
purely from the value of the period mapping what the corresponding surface
is (the “Torelli problem” in a strong form) seems to be still open in general;
if Hy = Z,, then the more explicit form of Proposition 2’ in [10] solves it.

Returning to our main theme, we derive as a consequence of Theorem 3
the virtual holomorphic rigidity of the domain C™3 — A, = Q"3. First we
define a natural action of the symmetric group ¥, on Q2"~2 by projecting
the permutation action of ¥, on the components of (P')":

C"—A— (P — (P /3, .

This involves the E,-equivariant action of the group PGLy(C) as Mdbius
transformations on each component P!. The quotient of C" — A by this
action is just 2773, The combined result is an action of the Lie group
G = PGLy(C)1 B, on C"—A which projects to an action of £, on Q772 as
biholomorphic isomorphisms, free of fixed points.

In the commutative diagram below, the vertical arrows denote quotient
by the action of PGLy(C) on each component. The unramified part of the
fibration F' is precisely the left hand part of the diagram.

(CT_A)/ET > (PI)T/ET

| 5

Qr—.’i/Er - W

NoTATION. For a domain § C C", write Aut(§2) for the group of biholo-
morphic self mappings of €2.

THEOREM 5. Aut(Q ) o 3,

PRroOF. Since Ty, is the universal cover of Q73 the familiar theory of
covering spaces coupled with local geometric structure (see for instance
[19]) implies that

Aut( %) = Aut(To )/ By,



Moduli of Riemann surfaces with symmetry 91

But by Royden’s rigidity theorem (see for instance [9] or [22]), Aut(Ty,,) is
just Modp » and the quotient MOdO,r/PO,r is the permutation group of the
punctures acting in the manner described above. 1

In the case of our Galois Hy-covering Sp of P!, there is a subgroup of T,
which consists of those permutations o € L, which extend the pure modular
Hj action in the sense that there is an element of Mody(Hy) which performs
the permutation ¢ on the ramification points of the Hy-action. This group,
denoted G(H,), is isomorphic to the quotient group Mod,(Hp )/Pg(Ho)-
From the present discussion, in view of Theorem 1, we may infer the final
result of this paper.

THEOREM 6. My(Ho) = Q72 /G(Hy)-
Hence both A’—Z;(Ho) and M (H,) are unirational and quasi- projective.

PROOF. The first statement is already clear from the definitions. A unira-
tional variety is just the rational image of a projective space under a rational
map so this follows immediately. The quasi-projectivity is a consequence of
the general fact that any quotient of a quasi-projective variety by a finite
group is again quasi-projective. 1

5. Final Comments.

1. The permutation group G(Hy) associated with a finite group of map-
ping classes has a simple characterisation in terms of lifting properties for
homeomorphisms of the quotient space So/H, ([10], [15]).

Using this it is elementary to produce examples where G(Hj) is trivial
and others for which G(H,) = Z,; the hyperelliptic involutions discussed
previously provide examples in every genus where G(Hy) = I, with r =
2 + 2
2g + 2.

2. It appears to be a difficult problem to understand what an appropriate
analogue of the j-function should be; indeed, the question whether such
functions exist even in principle is part of the classic Liroth problem which
asks when a unirational variety is in fact rational.

3. If the quotient surface Ry = So/H, has positive genus ¢;, then no
picture of the corresponding modular variety A’—/T;(Ho) has the same clear
pattern. Instead, one must contemplate the (at present inaccessible) nature
of the varieties of positive divisors on (variable) surfaces of genus ¢g;. Some
progress may be possible if g, = 1, however.
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4. In this paper we have developed a coarse moduli theory for surfaces with
a specified automorphism group. In the longer term, one hopes to include
this in a fine moduli theory for algebraic curves defined over @, where it
will be necessary to incorporate these ideas with the growing body of work
on Galois fields over Q and the representation theory of braid groups. For a
survey of this work, see [24], [25] and articles in the MSRI Volume 16 Galois
groups over Q. As a central fact which highlights the interaction between
Galois groups over Q and Galois coverings of P!, the theorem of Belyi [2]
may provide a suitable epilogue:

An algebraic curve is defined over some number field (Galois extension
over Q) if and only if it is a covering of P! with three ramification points.
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Modular groups - geometry and physics

W. J. Harvey

To Murray Macbeath on the occasion of his retirement

Introduction

Recent developments in the study of discrete groups associated to Rie-
mann surfaces serve to emphasize once again the importance of geometric
ideas in understanding structural properties of the most abstract kind. We
consider here two instances of this maxim applied to the mapping-class
groups Mod, »; each occurs within the action as the modular group on
the corresponding Teichmiiller space, Ty ,,, which classifies marked complex
structures on an n-pointed genus g surface. This space carries intrinsically
a structure of complex manifold with dimension 3¢ + n — 3 and a com-
plete global metric d defined in terms of the least (logarithmic) distortion
necessary in deforming one complex structure to another. The modular
group action is isometric and serves to identify points of T ,, that represent
holomorphically equivalent structures.

The first question we discuss concerns geometric structures of a more
concrete type within this metric framework, defined by a particular kind of
deformation which one now calls a Teichmiiller geodesic disc, a natural class
of complex submanifold of Ty , isometric to the Poincaré metric model of
the hyperbolic plane; they exist in profusion (through an arbitrary point in
any given direction). We present a construction via hyperbolic geometry of
some examples of Teichmiiller discs which project to finite volume Riemann
surfaces immersed in M,; on suitable finite coverings they form smooth
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totally geodesic submanifolds, isomorphic to affine plane models of certain
familiar algebraic curves.

QOur second topic involves a more formal geometric aspect of the mod-
ular action, relating to the combinatorial picture of how it extends to the
boundary of T ,. This is embodied in a certain simplicial complex 7, n,
whose chambers will be shown to define partial presentations for Mod, ,, in
terms of braid subgroups. The structural pattern which emerges is closely
related to contemporary work in theoretical physics on conformally invari-
ant quantum field theories on CP! and projective representations of braid
and modular groups.

Many of the results described here are already to be found in the liter-
ature; partly for this reason, I have in places chosen to neglect the strict
frontiers imposed by rigour in pursuit of the muse of geometry.

1. Geodesic surfaces in Teichmiiller space

1.1 Let X, be a fixed compact Riemann surface of genus ¢ > 2; a marking
on a genus ¢ surface is a homotopy class of homeomorphisms f: Xo — X,
viewed modulo composition with a conformal map of X. We shall operate
in the setting given by Bers [2] which produces models of all the Teichmiiller
spaces of marked surfaces in the wider context of deformations of Fuchsian
groups G within the upper half plane &/ by means of the space Q of quasi-
conformal (q-c) self-homeomorphisms of ¢/ fixing the boundary points 0,1
and oo. Let Q(G) be the set of all f € Q such that fGf~! is also Fuchsian.
For the groups G that concern us, which are of finite type with limit set
RUoo, the Teichmiiller space T(G) is just the quotient space Q(G) modulo
Q(G)NQq, where Qy C @ is the normal subgroup of maps that fix R U oo.

The extended modular group mod(G) of a Fuchsian group G is the quo-
tient group N(G)/N(G) N Qo, where N(G) denotes the normaliser of G
in the group Q of all q-c maps of U. By the Nielsen theorem on geomet-
ric realisation of automorphisms, mod(G) = Aut(G), the group of type-
preserving automorphisms of G ; the quotient mod(G)/G is the modular

group Mod(G), isomorphic to the mapping class group of the surface U/G.

1.2 DEFINITION. A Teichmiller disc is a set of marked complex structures
obtained in the following way. Fix a quadratic differential form ¢ € Q%(X,),
regarded as a holomorphic form of weight 4 for a suitable G on U. We define
a Beltrami form vy for G by the rule v4(z) = ¢(z)/|$(2)|; this is an element
of the Lebesgue space L™, (U, G) of (—1,1)-forms for G, which represent

complex dilatations on the surface Xy. For each € with |¢| < 1, we solve
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in U the Beltrami equation dw = ¢ - v4Ow. Conjugating the group G by
the family we of normalised solutions fixing 0,1 and oo yields the requisite
holomorphic family of Riemann surfaces over the unit disc A. The subset
with 0 < € < 1 is called the Teichmiller ray in the ¢ direction.

Here is an alternative geometric description of this deformation. A type
of parametrisation of X, by affine charts is determined by ¢: away from
the zeros of ¢, write ¢ = dw? to get local parameters w up to transition
functions of the form w — +w + c. At a zero of order n, a singular local
chart is defined by means of the branched (n + 2)-fold covering map. Call
such an atlas an F-structure on Xj.

Now for each € with |¢| < 1, define a new F-structure on the underly-
ing topological surface S by rotating non-singular charts through arge and
applying the mapping

1+ e

1 _1
w=z+iyr— Ko +1K. *y where K5=1 |E|

This has the effect of expanding the real (horizontal) foliation of the w-plane
while contracting the imaginary (vertical) one. The result of extending the
maps to the zeros of ¢ determines the same disc at Xy in the direction ¢.

1.3 The Teichmiiller deformation defines a holomorphic mapping A4 of A
into T(G) which is viewed as a model of T(Xj).

PROPOSITION. A4 is a proper holomorphic embedding.

The mapping is proper because as |¢] — 1, the L™ norm |levy| — 1
so Ag(€) tends to the boundary 0T(X,). It is injective by Teichmiiller’s
uniqueness theorem, holomorphic because the complex structure on T'(X,)
is determined via projection from the complex Banach space L, ,(U, G).

In the next sections, we shall give a recipe for such structures which
relates naturally to the hyperbolic geometry of surfaces given in explicit
form over P! as ramified coverings; the first examples were described from
a different viewpoint by W. Veech [15].

1.4 The hyperelliptic curve X, where n > 4 is odd, is defined by the
familiar affine equation

2 _ 1— wn,
which determines a compact Riemann surface X, of genus g = (n — 1)/2
with a single point at oo.



Modular groups 97

THEOREM 1. The stabiliser in the modular group Mod, of the Teichmiiller
disc determined by the differential ¢ = w? on X, is a Fuchsian triangle

o= (3 219 () 2E)) - oo

. .. . 1
which is isomorphic to (2} = 23 = 1), where 2!z, = 0, 2, = 8.

These groups G,, are conjugates of the Hecke groups, so named because
of his work on them in connection with Dirichlet series having a functional
equation. A fundamental polygon for the group G, may be chosen in U
whose sides are vertical line segments, L = {Re(w) = ~cot =} and o(L),
together with the hyperbolic perpendiculars to them from ¢. The element z,
of order 2 fixes the foot of the perpendicular from ¢ to the hyperbolic line L.
To produce a copy of the surface X,,, one takes the quotient space of i by the
commutator subgroup C, = [Gn,Gx], the kernel of a homomorphism from
G, onto the group Z; @ Z,, representing the relevant automorphism group.
The surface so obtained is identified as X, by recognising the hyperelliptic
involution: this is induced by conjugation with z; on U /C,,.

The proof is completed by showing that if we view U as the Teichmiiller
disc through X, given by the differential ¢ = w,?, where w, = dz/y, some
power of the parabolic element ¢ determines a product of Dehn twists about
loops in X,, defined by representative closed vertical trajectories of ¢, one
for each of the g = (n—1)/2 cylinders of the F-structure. Each loop shrinks
in length as one follows the ray from i, which represents the Teichmiller
point [Yn], to the cusp at oo, according to our earlier alternative description
of Teichmiiller ray. Putting this together with the torsion element z, in G,
which fixes 7, we see that the stabiliser in Mod, of this complex disc is just
G, since this group is maximal among Fuchsian groups.

COROLLARY. The quotient in M, of the Teichmiiller disc through X,
corresponding to ¢ is isomorphic to X, /Aut(X,,) =U/G .

1.5 We may apply a similar method to the Fermat curve Fy,,
ut=1-—2" (n>4)

which determines a closed Riemann surface F, of genus v = (n—1)(n—2)/2
with n points at co. It possesses a large symmetry group of order 6n?;
the quotient surface is a projective line with three ramification points of
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orders 2,3 and 2n. From the point of view of uniformisation, there exists
a representation of the Fuchsian triangle group I', with these periods onto
the group AutF',, with kernel K, isomorphic to 7 (F,).

There is a related tower of coverings (and subgroups) which reflects
the relationship between F;, and a certain n-sheeted quotient surface Y, =
U /H, which is hyperelliptic; this depends on the parity of n and for sim-
plicity we again restrict to the case of odd n, for which one has

Ko 9H, 3 {2,n,2n} 4T,.

The surface Y, has genus (n — 1)/2 by the Riemann-Hurwitz branching
formula and, by virtue of its evident symmetries, coincides with the surface
X, of §1.4. By direct computation of a rational mapping between these
surfaces one shows that the holomorphic 1-form w,, on X, pulls back to the
form Q,, = dv/u™"! on F,, which has zeros of order n — 3 at each of the n
points at infinity. Now the trajectory structure of Q, on F, is determined
by that of w, on X, and the monodromy of the smooth covering projection.
Arguing as before, or using the inclusion of T(Y,) in T(F,), we obtain an
analogous result for the modular image of U.

COROLLARY. The quotient in M. of the Teichmiiller disc through F,
corresponding to €2, is isomorphic to Fy,/Aut(F,).

2. Braids and modular groups

2.1 As one knows from topology, the modular group acts on a wide va-
riety of spaces; these actions have appeared in various parts of theoretical
physics, often as a foil for some involvement of Teichmiiller theory. What
seems rather more mysterious is the emergence of certain representations
of modular groups in conjunction with braids in quantum physics and the
Yang-Baxter equations, connected furthermore via the ideas of E. Witten to
the construction of polynomial knot invariants by V. Jones and others. This
latter link brings us back to familiar ground as there are well-trodden paths
between mapping classes and 3-dimensional manifolds by way of mapping-
tori or Heegard diagrams, but the new route via conformal field theory and
quantum physics, which we discuss in §3, appears here as something of a
Magical Mystery tour.

I shall describe a venerable technique, with origin in work of Poincaré on
Fuchsian groups, for generating certain geometric presentations for modular
groups, which exhibit a braid-like nature. These have occurred (albeit in
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more or less concealed form) in recent and earlier work (see [4], [6]), but
appear most clearly from the action of modular groups at the boundary of
their corresponding Teichmiiller spaces.

2.2 We recall the simplicial method for group presentation employed by
A. Weil and by A. M. Macbeath in the study of lattice subgroups of Lie
groups; see [10], [13] for details.

Let X be a simply connected topological space on which a group I acts,
and let U be an open set, connected and simply connected, such that X is
covered by the union of all translates yU, v € I'. Let ¥ denote the set of
those v for which 4U NU is non empty. If z., denote generating elements of
the free group F(¥) and E C ¥ x X is the subset comprising v, é such that
UNyUNSU # B, then by a theorem of Macbeath there is a natural surjection
¢: F(Z) — I whose kernel is the normal closure of the subgroup generated
by the elements w,yx&w;; , (7,6) € E. Application of this result to the case
where X is a simplicial complex on which the group I' acts simplicially
with finite quotient yields a presentation of I" with a simple combinatorial
description. Namely, let W C X be a finite subcomplex which contains
precisely one cell for each I'-orbit of cells in X and let V(W), £(W) be
the (finite) sets of vertices and edges of W. Denote by ', (v € V) and
T. (e € £) the stabilisers in I" of v and e respectively.

THEOREM 2. Assume that X is simply connected and that the action of T
preserves orientation on the edges £(W). Then I is isomorphic to the sum
of the groups I', amalgamated on the subgroups I',.

2.3 This result will be applied to the simplicial action of the modular group
Mod, » on the complex 7, , introduced in [5] and studied since by various
authors, including J. Harer [4] and N. V. Ivanov [7].

The complex of closed loops, Ty , = T(Syn) associated to a topological
surface S = S, is the geometric realisation of the partially-ordered set £
formed by all systems A of (homotopy classes of ) simple closed loops in Sy »,
ordered by inclusion. A maximal set A in £ contains 3g — 3 + n loops and
determines a decomposition graph T for S. These trivalent graphs consist
of a vertex for each connected component (3-holed sphere) of S\ A with an
edge for each connection, by a loop in the set A, to another (or the same)
component. The barycentric subdivision 7}, has a grading on vertices by
the number of loops in the corresponding (ordered) set A.

It is known that 7 , is connected and simply connected if the dimension
39 — 4+ n is at least 2. Furthermore the subcomplex consisting of loop
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systems that do not disconnect S is an equivariant retract of 7, », and there
is a homotopy equivalence between the 2-skeleton of 7, and the complex &'
used in [6] to describe a presentation of Mod,. Prominent in the structure
of X is the class of 2-cells (pentagons) which correspond to pentagonal
bracelets; these are 5-cycles of loops, each intersecting the next in a single
point, lying in a subsurface Sz, C S. Following a path through a sequence
of chambers in the complex 7, involving such a cycle of fusion moves -
deletion of a loop and insertion of its successor which intersects it in one
point while remaining disjoint from all others in the loop system — defines a
closed path in the complex which is spanned by a pentagon in X’ or simplicial
2-cyclein 7 ,,. Together with less intricate bracelet types of shorter length,
these cells make up the whole complex X'.

The modular group permutes the set £ and induces actions on all these
complexes. A finite fundamental subcomplex exists in each case (after
barycentric subdivision). In view of theorem 2 above, the structure of the
group Mod, . is determined by amalgamating the vertex stability groups
[, over the edge groups I'. as v, e run through the finite sets of top-graded
vertices and edges corresponding to fusions.

2.4 By an induction argument on grading it is possible fo deduce that the
structure of Mod, , is built up from that of certain subgroups of the classical
modular group by iterated amalgamations. Rather than study that pattern,
we outline a different aspect which emerges from analysing the subcomplex
of 7T, , comprising chambers with a fixed type of decomposition graph T.
This is a connected, simply connected subcomplex on which Mod, » acts,
with an interesting structure in its own right.

The following result is indicative of the underlying braid-like character
of modular groups.

THEOREM 3. Let ¢ = op be a chamber of 7, ,. There is an associated
presentation of Mod, ,, which is given by a surjection ® : B(s) — Mody ,,
where the group B(o) is the quotient of the free group F, generated by
symbols {sg,te; £ € A}, with braid relations

Setese = tesety  for every non-separating (n-s) £ € A,
te, 8¢ commute with t,,,8,, for every pair £,m € A.

The proof rests on elementary facts about Dehn twists. We show that
the set

E(op) = {7 € Mod, n; 05 Nyay # 0}

contains a subset of the requisite type. Observe that any n-s loop £ in A has



Modular groups 101

a companion loop £' € ¥ with the property that £ N ¢ = ¢' N A is a single
point. The corresponding twists t, and s¢ are known to satisfy the above
relations in Mod, ,. Furthermore, this set of 6g — 6 + 2n twists is sufficient
to generate Mod, , by a modification of standard results on generating sets,
due to Dehn and Lickorish and refined by Humphries.

The kernel of @ is dictated by the 2-cells of X.

3. Geometry and physics

In this final section we comment briefly on some of the implications and
further developments of these results.

3.1 A harbinger of the current interaction between Riemann surfaces and
theoretical physics was the picture developed during the 1960’s by particle
physicists (including Koba, Nielsen, Alessandrini and Mandelstam) of light
cone diagrams for a moving string, which sweeps out a closed surface S
in space-time, generating non-trivial topology by dividing and /or rejoining,.
The built-in singular foliation of S by level curves of time represents a closed
1-form, which can be rendered holomorphic by suitable choice of complex
structure for S. In this connection, the particular examples described in §1
correspond to a special part of some decomposition of the Teichmiiller space
into cells representing the various choices of combinatorial pattern possible
for such string diagrams on a genus g surface. For further discussion of this
theory see for instance [3].

3.2 A further application of the Teichmiiller deformation described in §1
lies in the connection with Euclidean polygons and their dynamical prop-
erties, described in [8], [15]; here it is worth mentioning that Veech’s work
demonstrates a close relationship between the analytic theory of Eisenstein
series for Hecke groups and the asymptotic behaviour of the length spectrum
for periodic billiard trajectories in certain isosceles triangles and regular n-
gons. For instance he shows that the zeta function of the simple length
spectrum for the affine g-structure on X,, is a weighted sum of Eisenstein
series, whence by a Tauberian theorem the growth rate is quadratic.

3.3 Finally, we indicate the relationship between §2 and quantum field the-
ory. A further complex Y = )Y, , on which the modular group Mod, , acts
was introduced by Moore and Seiberg [11] in their work on the construction
of conformal field theories (see also [9] and [14]); this complex is closely
related to A'. A method is given for constructing projective representations
of Mod, » by means of the standard spin representations of the Lie algebra
sl (C), which are used as labels on the edges of the decomposition graphs
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Y. These labellings are the index sets for the basis elements of finite dimen-
sional vector spaces V(T) (known as conformal blocks) on which Mod, ,
acts by combining its permutation action on the simple loops and boundary
components of S, , with the various label representations. We note two
important implications for this theory of results mentioned in §2.

Firstly, as a consequence of the connectedness of YV, which follows from
that of X', the vector spaces V(T) constructed (though not the representa-
tions) are independent of the graph T employed, and one obtains in this way
projective representations of modular (and braid) groups, because there are
natural isomorphisms ®yv/ : V(T) — V(T') for each T, T’ implied by the
simple connectedness of ).

Secondly, there is a deep implicit connection with the study of polyno-
mial invariants for knots and 3-manifolds; this is explained in particular
by Kohno in a recent Nagoya preprint via Heegard diagrams. The Lincei
lectures by Atiyah [1] describe Witten’s approach to this in some detail;
also discussed is a further important step (due to G. B. Segal) towards a
mathematical framework for QFT that involves assembly of all the requisite
Hilbert spaces and unitary operators (one for every Riemann surface) into
a modular functor. The natural relationships necessary between the various
entities are synthesized into a categorical formulation which is then shown
[12] to produce precisely the projective bundles over (all) moduli spaces of
Riemann surfaces constructed more painfully by other authors.
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On automorphisms of free products

A. H. M. Hoare and M. K. F. Lai

for Murray Macbeath

1. Introduction

Whitehead [8] represented elements of a free group by embedding sur-
faces in an orientable 3-manifold and represented the action of an automor-
phism by changing the surfaces. Combinatorial versions of his results were
given by Rapaport [7] and by Higgins and Lyndon [3]. These were further
developed by McCool [6] and a graphical version of his results is given in
[4]. More recently Whitehead’s work was extended by Gersten [2] to sub-
groups of a free group and by Collins and Zieschang [1] to elements of a free
product.

In this paper we prove the Peak Reduction theorem of [1] for subgroups
of a free product. The notation used differs slightly from that in [1] for
reasons that will be apparent. We use a concept from [2] and an action by
automorphisms on coset graphs similar to that in [5] and dual to that in
[4]. This action is also similar to some ideas of Wicks [9]. The authors are
grateful to Don Collins for useful comments and criticisms.

2. Preliminaries.

Let G be a group with identity e. Let X be a set of generators for G
closed under taking inverses. If H is a subgroup of G then the based coset
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graph (T', H) has for vertices the right cosets of H, with H itself being the
base vertex, and has for each z in X a directed edge labelled z joining K to
Kz for each coset K. The inverse of each such edge is the edge labelled !
from Kz to K. The labelling, A say, of the edges induces for each vertex K
a one to one correspondence between paths p starting at K and words in
X. We shall use A(p) to denote the word in X or the corresponding element
of G according to the context. If p is a path with initial vertex K then its
terminal vertex is K A(p). In particular a word w in X defines an element
of H if and only if the path p starting at H with label w ends at H. A shift
of base point to K gives the coset graph of K"'HK, so an unbased coset
graph uniquely represents a conjugacy class of subgroups of G.

DEFINITION. If v is any vertex of a directed graph then star v is the set of
edges with initial vertex v. Each such edge is called an ezit from v. [The
latter useful terminology is due to Collins.]

Now suppose that G is expressed as a free product F(S) * (*,.5G;),
where F(5) is the free group on the set S and each G; is indecomposable
and not infinite cyclic. Let X consist of the generators S and their inverses
together with all elements of the factors G; excluding the identity. A word
W =TT, ... T, in X is reduced if no z; z; ., is equal in G to an element
of X or to the identity e. Each element of G is given uniquely by a reduced
word.

DEFINITION. A path pin (T, H) is reduced if A(p) is reduced.

NOTE. We consider the edge labelled z from K to Kz to be identified
topologically with its inverse. This means that in what follows when we
delete an edge we also delete its inverse and when we insert an edge with a
given label we also insert the inverse edge with the inverse label.

3. S-Whitehead automorphisms.

Let A = {a,a” !} where a is an element of S*! and let Ag, A; be a
partition of X such that a € A, and a™! € Ag and, for each j € J, all the
non-identity elements of G; are contained in the same A;. Let ay = e and
ay; = a. The corresponding S-Whitehead automorphism ¢ acts on reduced
words in X by

z—zif z€ Aand

T — a,wa}l otherwise, where ¢ € 4;,z7 ' € Aj,
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and then cancelling any e or a~!a. We denote this Whitehead automorphism
by (Al , a1 )

EXAMPLE. Let G = {a,b,s,t;a® = b* = 1) then G = (a) * (b) * (s) * (t)
and X = {a,a7',b,s,571,¢,t7'}. Let 0 = (Si1,81) where s; = s and
Sy ={t7',s,b=>07""}. Then o takes a to a,b to sbs™',s to s, and t to ts~!
so for example

gits s ts s

o :tha™! v ths a7t

1

o taba 't — ts lasbs lalts™!

We now define the action of ¢ on (T, H).

(1) Split each vertex K into two vertices K; and K, such that A(star K;) =
A; and join Ky to K by a new directed edge labelled a from Kj to K;.

(ii) Delete all the old edges labelled a identifying their initial and terminal

vertices.

EXAMPLE. Let G and ¢ be as above. Let H be a subgroup of G such that
Figure 1 is part of (I', H). The result of applying step (i) of ¢ to this part of
(T, H) is given in Figure 2(i) where the straight vertical edges are the new
edges. The result of applying step (ii) is given in Figure 2(ii).

Figure 1

The new vertices are obtained by combining each vertex Ko with L,
where La = K. Denote the resulting vertex by K', and take H' as the new
base vertex. Denote the resulting graph by (I, H') = (T, H)o.
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If pis a path in (T, H) from H to K then the action above takes p to a
path p’ in (IV, H') from H' to K' as follows.

H():H]

Figure 2(i) Figure 2(ii)

Firstly by inserting the new edge labelled a or a~! whenever the path
is split by (i) we get a path from Hy to Ky. This path begins with the new
edge labelled a from Hy to H; if and only if p begins with a directed edge
having label in A,. Similarly it ends with the new edge labelled a™! from
K, to K, if and only if p ends with a directed edge whose inverse has label
n Al .

Secondly by deleting all the old edges in p labelled a or a~! and iden-
tifying their initial and terminal vertices we get the path p’ from H' to K’
in (T, H").

If p is a reduced path then so is p'.

LEMMA 1. Let p be a reduced path from H to K in T and let p' be the
path in T’ from H' to K' as defined above, then \(p') = A(p)o.

PROOF. Suppose p has label A(p) = z122...2,,2; € X%, Then, by the
definition of p’, A(p') is obtained from A(p) by putting a new a in front of
z1 if and only if z; € A;; putting a new a between z; and ;41 if and only
if xi_l € Ao and z;4) € A;; putting a new a~! between z; and z;4 if and
only if x]-_l € A; and z;4; € Ap; putting a new a™! after z, if and only if
27! € A;; and finally deleting any z; = a*!. It is easily checked that this
is the same as the result of ¢ acting on the reduced word A(p). I

EXAMPLE. The paths in Figure 1 starting from H with labels ts~!, tba™!
and taba~'t ending at M, N and H go to the paths labelled ts~'s™! =
(ts™Y)o, thsla™! = (tha™')o and tslasbs'a"Mts™! = (taba~'t)o from
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H' to M', N' and H' respectively, that is My, Ny and Hy in Figure 2(ii).
COROLLARY 1. The graph (I, H') is the coset graph of Ho.

Proor. (T', H) has unique exits with each label in X and the paths p’ from
H' to H' are precisely those with label A(p') in H'. Ul

DEFINITION. (see [2]) The core of (T', H), denoted by Core(T, H), is the
smallest connected subgraph of (I', H) containing all reduced circuits. The
vertex H itself need not be in Core(T, H).

We now consider the action of o restricted to Core(T', H).

(i) Split K into vertices K, and Ky as above so that K; exists if A(star
K)N A; # 0 where star K now refers to the exits from K in Core(T', H). Hf
both Ky and K, exist join them by a new edge labelled a from Ky to K.

(ii) Delete all old edges labelled a in Core(l’, H) and identify each pair of
end vertices.

CoRroLLARY 2. Core(IV, H') is given by the action of ¢ on Core(T', H) as
defined above.

Proor. This follows from Corollary 1. The restriction on the splitting of
vertices in (i) ensures that there are no end vertices in the resulting graph. Il

ExAMPLE. If Figure 1 gives the whole of Core(T', H) then, apart from the
vertex Ny, Figure 2(ii) gives Core(I", H').

REMARK 1. From the definition 6™} = (A—a+a™!,a™!), moreover applying
step (i) of 07! to Core(I”, H') reverses step (ii) above in such a way that

K} = K, for all K.

4. J-Whitehead automorphisms.

Let A be one of the free factors which is not infinite cyclic. Let e =
ag,Q1,...,0n,... be the elements of A4 and let Ay, Ay,...,An,... be a par-
tition of X\ A, where some A; may be empty, such that all non-identity
elements of each G; are contained in the same A;. The corresponding (mul-
tiple) J-Whitehead automorphism 7 (see [1]) is defined on reduced words
in X by

z—zifzed

z — a,-aca]-_l otherwise where z € A;,27' € Aj,
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and then coalescing any product of elements of A and deleting e. We denote
this automorphism by 7 = [[,_,,(4:, a;).

The action of this automorphism on the coset graph (', H) is defined by

(i) Delete all edges with label in A, then split each vertex K into Ko, Ky, ...,
K,,...such that A(star K;) = A;. We assume at this point that K; exists
for all 7 even if A; is empty.

(ii) Identify vertices equivalent under the relation K; ~ L; if Ka; = La,.
Let [K;] denote the vertex defined by the equivalence class of K;. For each
K and each i # j join [K;] to [K;] by a new directed edge labelled a;'a;.

EXAMPLE. Let G and H be as above and let A = (a) with ¢y = ¢,a;, = a
and a; = a7 '. Let Ag = {s7',t},A1 = {b=0"",s} and 4, = {¢t7!}. The
corresponding 7 takes a to a,bto aba™!,s to as, and ¢ to ta. The two steps

of the action of 7 on the part of (', H) in Figure 1 are illustrated in Figure
3(i) and 3(ii).

H, a H
Ly=L =1,
My =K, =N,
M] = K2 = N()
M'_) = K() = Nl
Figure 3(i) Figure 3(ii)

For each K let K' denote the vertex [Kjp]. There is precisely one vertex
with each suffix in each equivalence class under the relation in (ii). Thus
K' has precisely one exit with each label in X\ A. For each a; € A,a; # ¢,
there is an edge labelled a; joining K’ to [K;] = L' = [Lo] where Ka; = L.
Thus K' has an exit with each label in A. Moreover if [K;] = [L,;] and if

1

a; ‘a; = a;'a, then [K;] = [L,], so K’ has precisely one exit with each

label in A. Thus the new graph is a coset graph.
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To prove the analogue of Lemma 1 and its corollaries consider the action
of o on reduced paths in I" from H to K. Suppose that some such path p
with label w has successive edges labelled 27!, a and y with vertices M and
N, not necessarily distinct, as below

& M-S NL

where a € A,z € A; and y € A;. Then Maa; = Naj, so [N,] = [Mi] where
ar = aa;, and, after operating on the coset graph, p is replaced by the path
p' from [Hy) to [Io] with successive edges

< (M) 2 (M) = [V;)

R S . . .
where b = a] a; = a;  aa; provided a; # aaj, or

& [Mi] = [N;] =
if a; = aa;.

The end vertices and edges of p and any successive edges labelled 7!,y
with ¢ € A; and y € A; are transformed in the obvious analagous manner.
Comparing this with the action of 7 on reduced words we see that as in
Lemma 1 the path p’ has label wr, and hence Corollary 1 holds.

EXAMPLE. Consider the path in Figure 1 from H to N with label sts™!ta.
Under the action of 7 this becomes the path in Figure 3(ii) from [Hy] to
[No] with label astas™'a™!ta = (sts~'ta)r.

To define the action of 7 on Core(T', H) we first observe that by the
definition of the core every vertex has at least one adjacent edge with label
not in A. The effect of 7 on Core(T, H) is given by the following.

(i) Delete all edges with label in A. Split each vertex K into {K, : A(star
K)N A; # 0}, star K as before being defined in Core(T', H), so K; exists
only if K has exits with label in A;.

(ii) Identify K; with L; whenever K is joined to L in Core(T', H) by an edge
labelled a,-a;l. Join [M;] to [N;] by a new edge labelled a; 'aa; whenever
M is joined in Core(T, H) to N by an edge labelled a, that is whenever
Ma=N.

It is clear that this is the action of 7 on the coset graph restricted to
Core(T', H). Moreover as in Corollary 2 the resulting graph is Core(IV, H').
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NoOTE. We use the fact that any reduced path in the coset graph (T', H)
with end points in the core is itself in the core.

ExXAMPLE. If H is as above then applying (i) of 7 to Core(T', H) gives
only the six edges labelled ¢,b and s with their adjacent vertices in Figure
3(i). Applying (ii) we have Ny ~ M, and [K,] is joined to [M;] by an edge
labelled a;'aa, = a, etc. Figure 3(ii) gives the result.

REMARK 2. The J-Whitehead automorphism 77! is given by the elements
a;' =e,a;',...,a;",... and the same partition Ag, 4,,...,4, ...; more-
over applying (i) of 77! to Core(I", H') brings us back to the graph obtained
by (1) of 7 applied to Core(T', H). The two graphs are identified by putting

[K;]i = K, in particular K} = K.
5. Combinatorial Lemmas.

Henceforth suppose that Core(T', H) has only finitely many vertices and
let ||H||, the complezity of H, be the number of such vertices (see [2]).
Suppose also that, discounting edges with labels in the same non-cyclic free
factor G;, each vertex has only finitely many adjacent edges. This means
that each vertex K splits under (i) into only finitely many K.

In this section we use the term ezit in S, where S is a subset of X, to
mean exit with label in S.

Let o = [[;20(4i,ai) and 7 = [[;4,(B;,b;) be S-Whitehead or J-
Whitehead automorphisms with A # B. Let A = ;0 4i and B =
Uj;eo B;.

i#0

LEMMA 2. If AUA C By then o7 = 7o and

|Horll = 1Holl = |E7| - | H].

ProOOF. The first part is clear. To prove the second part we first consider
the case when ¢ is S-Whitehead. Apply step (i) of o to Core(T', H) and
let the resulting graph be denoted by A. In Figure 4(i) we have a vertex
K in Core(T', H) and in Figure 4(ii) the corresponding vertices K; and K
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of A. In general not both K; will exist. Here and in later figures, broad
arrows represent all exits from the relevant vertex whose labels are in the
given subset of X.

Figure 4(i) Figure 4(ii)

We now apply 7 to the graph A and compare this with the action of 7
on Core(T', H). Consider the two steps by which the action of 7 on A is
defined.

Step (1). If K, exists then it is not split since all its exits are in AUA, C
By;. Now consider any vertex Ko. Since B; C Ay for j # 0,K, exists
and has exits in B; if and only if K has such exits. Moreover because
a € A C By, Ky also has exits in By if and only if K has, i.e. either K,
exists or K has exits in Ag N By (see Figure 4(ii)). Therefore the splitting
of K¢ by T mirrors the splitting of K in the sense that K splits if and only
if K, exists and splits in the same way as K.

Step (ii). If 7 is S-Whitehead then the number of edges labelled b in
Core(T', H) is the same as the number labelled b in A and is in each case
equal to the number of identified pairs of vertices. Thus

ATl = Al = 27| - 1 H]|

where ||A|| is the number of vertices of A.

If 7 is J-Whitehead then since B C Ag the split vertices of A are iden-
tified in step (ii) of 7 if and only if the corresponding split vertices of I' are
identified. Thus in this case also

AT = Al = 1H] - | H]l.
We now consider the action of 7 on Core(I, H'). By Remark 1 applying

step (i) of o~ ! to Core(I",H') gives the same graph A, and by the same
argument as above we also have

Al —lAl = |1#' 7]l — |1
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where H' = Ho. This completes the proof for the case when ¢ is S-

Whitehead.

If 0 is J-Whitehead the argument is essentially the same but we need
to modify the splitting of A by 7 as follows.

(i) I 7 is J-Whitehead delete all edges with label in B. Split each
vertex L of A into {L; : A(star L) N B; # @}. Additionally add a vertex
Lo whenever L = K and K has exits in By but Ky has not. If 7 is S-
Whitehead add a new edge labelled b from Lo to L, whenever they both
exist.

NoTE. Clearly (i)' depends on Core(T', H). The extra vertex Lo is added
whenever L = Ky and K has exits in Ay and in By but none in Ay N By.

As before any vertex K;,7 # 0, in A is not split since A; C By. Also
as before K, exists and has exits in B; if and only if K has. Moreover,
with the modification, L exists if and only if K has exits in Bg. Thus the
splitting of K¢ mirrors the splitting of K. This is illustrated in Figures 5,6
and 7, when K has exits in Ap and By but none in Ag N By.

A
4i¢ ™
A K;
, AO AAO
K e K=L
Ak Ak Kk
Figure 5(i) Figure 5(ii)

Figure 5(i) gives the vertex K in Core(T', H). Figure 5(ii) gives the part
of A arising from the vertex K.

A
'QOK:' b i B
1
b
By gr—e— B Ak%k Ly Ly

Figure 6(3) Figure 6(ii)



114 Hoare and Lai

B,
% i % .@ B
By ¢ Ki o; L

0
0% 4, T —
B ¢ K L B,

J
Figure 7(i) Figure7(ii)

Figures 6(i) and 7(i) give the splitting of K by step (i) of 7 when 7 is
S-Whitehead and J-Whitehead respectively. Figures 6(ii) and 7(ii) give the
corresponding modified splitting of the relevant part of A, i.e. of Figure
5(ii).

Applying step (ii) of 7 as above we get
AT - Al = 12| - [ H]I.

By Remark 2 applying step (i) of ~! to Core(I, H') gives the same graph
A with K; corresponding to [K;];. Thus to complete the proof we need to
show that the two modified actions of 7 on A depending on Core(T', H) and
Core(I, H') are the same.

Suppose that K has exits in Ag and in By but none in Ag N By. Then
K' has the same exits in Ag as K has. Thus we need to show that K’ has
exits in By, for then K’ will have exits in A¢ and in By but none in AN By.
By the condition on the exits from K and the hypothesis of the Lemma, K
has an exit in A U A. Suppose K has an exit in A; where ¢ # 0 then K, is
a vertex of A and so R’ = [Kj] has an exit with label a; € By joining it to
[K;]. On the other hand suppose K has an exit with label a in A joining it
to M say, then M has an exit in some A; where j could be zero. If a = a]-_l
then K' = [K,) = [M;] has an exit in A; otherwise K’ = [Kj] is joined to
[M;] by an edge labelled aa; € By. Thus in either case K’ has an exit in
By. Interchanging K and K’ we deduce that the two modified actions of 7
on A are the same. Thus we have

AT = Al = [|HoT|| = | Ha]|

when 7 is J-Whitehead. This completes the proof of the Lemma. I
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LEMMA 3. If A is not equal to B but AU Ay = BU By then
|Hol|l + | H7| 2 2|

PROOF. We show that each vertex K of Core(T', H) contributes at least two
to the L.H.S. To distinguish the split vertices we use the notation I\’ 4, and
Kp;. By the definitions no K 4, is identified with any L 4, under step (ii) of
o and similarly with Kp,. So we count [K4,] and [Kp,] if they exist each
as contributing one to the L.H.S. Suppose there is no K 4, given by step (i)
of o then, whether ¢ is S-Whitehead or J-Whitehead, K has at least one
exit with label  not in Ay or A. By the hypothesis « is in some Bj, j # 0,
so Kp; is created by step (i) of 7. Moreover, since there is no K 4,, K has
no exit in B so Kpg; is not identified with any Lp, under step (ii) of 7 and
we count this [Kp;] as contributing one to the L.H.S. Similarly if there is
no Kp, then there is some K 4, which is not identified with any L 4,. So in
all cases K contributes at least two to the L.H.S.

Now suppose that AUB C By U Ay and A # B. If ¢ is J-Whitehead
let o9 and &, be the J-Whitehead automorphisms defined by the elements
e = ag,day,.-.,0an,... and the partitions

Ao U(A\By), 4, N By, A2 N By, ..., A, N By, ...

and
A} = Ay U(AN By), A1\Bo, A2\Bo, ..., Az\B, ...

respectively.

If o is S-Whitehead let oy and o, be the S-Whitehead automorphisms
defined by the elements a, and a™! and the sets

Ao U(A1\Bo), A1 N By,

and
Al = 4, U (4, N By — a), 41\(Bo — a),

respectively.
Let 79 and 7y be defined similarly interchanging A and B.

COROLLARY 2. Suppose AUB C By U Ay, A # B, and suppose a™! € B,
whenever o 1s S-Whitehead, then

[Hol| + [|H ]| 2 |Hooll + [ H7o-
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PROOF. The hypothesis implies that A U A} = B U B} so Lemma 3 can be
applied to ¢, and 7 acting on HogTy to give

“HO’()'T()'T]” + “HO’()'T()O'l” > 2“H0’07’0“.

By applying Lemma 2 three times we have

[Hoor|| = [ Hooll = | HT|| - [ H]|
since A U (fi N By) C By,

[Horoll = | Hell = [[Hmoll — [l
since AUA C By U (B\Ao), and

[Hoomoll = [[Hooll = [[HToll — || ]l
since AU (AN By) C By U(B\Ay).

Since T = 1971 and Ty = gg01To = 0gToo1 the result follows. B

We need two further lemmas to deal with the cases to which Corollary 2
does not apply.

Suppose ¢ and T are the S-Whitehead automorphisms (A, a) and (B, b)
respectively. Suppose also that the elements a,a™!,b and ™! are in 4; N
By, Ag N By, Ag N By and A, N By respectively. Let py = (4, N By, a),p2 =
(Ao N Bg,a™'), p3 = (Ao N By,b) and py = (A, N By, b71).

LEMMA 4. Under these conditions
2|Heo|| + 20| H|| 2 (| Hpall + |1 Hpzll + |1 Hps|l + || H pall

PRrROOF. We first consider the splitting of Core(T', H) by the various White-
head automorphisms. By considering the labels of the exits we see that if
a vertex K is split by py or p, then it is also split by ¢ or 7. Moreover if it
is split both by p; and by p2 then it is also split both by ¢ and by 7. Thus
the total number of vertices split by ¢ plus the number split by 7 is greater
than or equal to the number split by p;, plus the number split by p;. The
same holds for p; and p4.

Now the number of vertices lost in step (ii) of p1,p2 and o are all equal
to the number edges of Core(T", H) with label a. Similarly the number lost
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in step (i) of p3, p4 and 7 are all equal to the number of edges with label b.
The result follows by counting gains and losses. 1

Suppose again that ¢ and 7 are S-Whitehead. Suppose now that ~!
and a are in By N A, and ¢~ ! and b are in Ag N B,, where a and b~ are
not necessarily distinct. Let py = (By N Ay,a) and p; = (4o N By, d).

LEMMA 5. Under these conditions
He|l + (| H7ll = | Hpull + | H p2l|

PROOF. As above the total number of vertices split by ¢ plus the number
split by T is greater than or equal to the number split by p; plus the number
split by p,. Moreover as above the number of vertices lost in step (ii) of py,
and ¢ are both equal to the number edges of Core(T', H) with label a and
the number lost in step (ii) of p2 and 7 are equal to the number of edges
with label 4. The result follows as above. 1

6. Peak/Plateau reduction.

Let © consist of all Whitehead automorphisms, all permutation auto-
morphisms, i.e. permutations of isomorphic free factors, and all factor au-
tomorphisms, i.e. automorphisms of the free factors, see [1]. A peak/plateau
consists of a subgroup H and two automorphisms ¢ and 7 in §2 such that

|Holl < || H|| > [[H7.
A reduction of this peak /plateau consists of automorphisms 7y,...,7, in Q

such that o7y ... T =7 and ||Hom ... 7y|| < ||H| forg=1,...,m—1, (see
Figure 8 in which height represents complexity).

o H

A

T

m

Figure 8
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THEOREM. Every peak/plateau has a reduction.

PROOF. The argument is essentially the same as in (3], [6] and [1]. Sup-
pose ¢ is a permutation or a factor automorphism then o changes the la-
bels of edges of Core(T', H) and does not change the complexity. Therefore
|Hre|| = ||H7|| < ||H|. Morecover 7° = 6770 is in @, so 79,07 ! is a
reduction.

Now suppose that ¢ is a Whitehead automorphism. We observe that
inner automorphisms are products of S-Whitehead automorphisms of the
form (X —a,a), with a in S, and J-Whitehead automorphisms (X — A, a),
with @ not in S. Moreover inner automorphisms together with permuta-
tions and factor automorphisms may be collected at the end without af-
fecting the theorem. Thus without loss we shall work modulo such auto-
morphisms. In particular we may replace the S-Whitehead automorphism
(A1,a) by (Ao,a™') and the J-Whitehead automorphism []._,(4i,a;) by
Ha;éa'_(A,-,a'la,') where a € A.

i#0

Suppose ¢ and T are both S-Whitehead. If a,a™!,5, and 5! are all
in different sets A; N B; then without loss of generality the conditions of
Lemma 4 hold. Moreover 2||H|| > ||Ho| + ||H7|| so ||Hpil| < ||H] for
some 1. Suppose ||Hpq|| < ||H||. Then putting p for ps,(Ag,a™') for o and
(B, b ') for 7 we have AU Ag C Ap U B, so by Lemma 2

[Hopll = |Hall = [ Hp|l = | H]]-

Moreover modulo an inner automorphism po = op. So ||Hop|| < ||H]|
and p,07!, p717 = (Bg\A1,b57!) is a reduction. The proof is similar when
[Hpi|| < ||H|| for i = 1,2, or 3.

If ¢ and 7 are S-Whitehead with a,5,a™! and 3~ contained in two of
the sets A; N B; then we may apply Lemma 5 to find ||Hp;i| < | H| and
proceed as above. Note that this case includes A = B.

If 0 and T are S-Whitehead with a,b,a™! and 5~! contained in three of
the sets A; N B; then, after putting (Ag,a™") for ¢ and (By,d™ ") for 7 if
necessary and possibly interchanging ¢ and 7, the conditions of Corollary 2
hold. Therefore either ||Hoo|| < | H|| or ||H7o|| < ||[H|| and we can proceed
as before. Thus we have covered all the cases in which ¢ and 7 are §-

Whitehead.

Suppose now that 7 is J-Whitehead. If A = B then as shown in [1]
o~ '7 is also J-Whitehead and so forms a reduction. If A # B then working
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modulo inner automorphisms etc. we can ensure that B C A¢ and then
that a € By when ¢ is S-Whitehead, and A C By when ¢ is J-Whitehead.
Thus the hypotheses of Corollary 2 hold with ¢ and 7 interchanged and we
proceed as above.

The proof holds equally well if ¢ is J-Whitehead interchanging ¢ and 7.

This completes the proof of the theorem. N
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The growth series of the Gieseking group

D. L. Johnson and H.-J. Song

To Murray Macbeath on the occasion of his retirement

The question.

The growth series of a group G with respect to a finite generating set X

is a power series
Gx(t) =) cat"
n>0

in an indeterminate ¢ with integer coefficients, where the ¢, are the growth
coefficients in the sense of Milnor [6]: c, is the number of elements of G
that can be written as a product of n elements of X and their inverses, and
no fewer. For a brief history of the study of growth of groups, we refer to
[3] and the references cited there.

The Gieseking group is the fundamental group of the Gieseking manifold
and is given by the presentation

G=(x,y|w2y2=yw).

We write G(t) for the growth series of this group with respect to the gener-
ating set X = {z,y} and compute it explicitly below. It turns out to be a
rational function of ¢ whose coeflicients grow exponentially.
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The answer.

The group G is associated with a certain regular tesselation 7 of hyper-
bolic 3-space H? by ideal tetrahedra, which may be derived either from the
geometrical construction in [5], pp. 153-156, or from the Cayley diagram I'
of G in the following way.

We can picture I' as being made up of hexagonal cells with oriented
edges labelled by letters of the (cyclic) relator r := z%y%z~!y~!. Since the
12 subwords of length 2 in r*! are all distinct (and so coincide with the 12
reduced words of length 2 in the free group F(z,y) ), these hexagonal cells
meet

in threes at each edge, and
in sixes at each vertex, since
there are 4 edges (labelled %!, y*!) at each vertex of T.

As will be seen directly, these rules of incidence ensure that I' embeds in
H?3, which we think of as the interior of an open Euclidean 3-ball whose
geodesics are arcs of circles orthogonal to its boundary S2.

The tesselation T is the dual of the 1-skeleton of T' regularly embedded
in H?® as follows. The vertices of a regular Euclidean tetrahedron inscribed
in $? = §H? define an ideal hyperbolic tetrahedron T in H? whose faces
turn out to meet in pairs at an angle of 7 /3. Repeated application of the
reflections a, b, ¢, d in these four faces yields 7, made up of ideal tetrahedra
meeting in sixes at each edge.

Now the growth coefficient ¢, of G is just the number of vertices of T’
distant n, in the usual graph metric, from a preferred one. But this is the
same as the number of tetrahedra in 7 got by a minimum of n reflections
from a fundamental region, T say, and this in turn coincides with the nth
growth coefficient of the corresponding hyperbolic Coxeter group (see [2],
p. 142, foot of second column):

W={a,d,c,d | a’=b=c=d*=1, (ab)*= (bc)*= (cd)*= (da)’=(ca)*’=(db)*= 1).

The groups G and W are thus isometric, so that the growth series can be
found from the general formulae in Exercise 26 of [1], p. 45 (or [2], p. 123):

Z (-pi¥ {tm/W(t) if |W| < oo,

= Wy (@ 0 if W] = oo,
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where W is any Coxeter group with a finite set S of generators and
m = max{l(w)|w € W} in the finite case.

The subgroups Wy of our W are enumerated as follows.

|Y| = 0 : one trivial subgroup with growth series yo = 1.
|Y'| =1 : four cyclic subroups of order 2 with growth series vy =1 +¢.
|Y| = 2 : six dihedral subgroups of order 6 with growth series

Yo = (14 )(1 4t +¢%).
|Y| = 3 : four affine subgroups with growth series given by
1 3 3 1

— S+ ==,
Yo M Y273
that is,
C14t4#
BETa—r

|Y| = 4 : the whole group with growth series v4 given by

1 4 6 4 1
-t ———+—=0,
Yo 4! Y2 73 Y4

that is,
_ (1+t)(1+t+t2)
HE O —t-se)
PROPOSITION.
(1+)(1+1t+12)
) = .
G(t) (1-t)(1 —1t—3¢2)
Remarks.

1. Because the denominator here has roots (14+4/13)/6 inside the unit circle,
the growth rate of the coeflicients ¢, is exponential. A simple calculation
shows that they are given by the linear recurrence

co=1 c1=4, c2=12, ¢3 =30, ¢p =2¢p—1+2¢p—2 —3cp—3, n > 4.

2. It would be interesting to have other non-trivial examples of such isome-
tries between finitely-generated groups. For example, we can get one such
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very cheaply as follows. It is a simple matter to check that any 2-generator
one-relator group with the crucial property

P: the 2-letter subwords of the cyclic relator and its inverse are all
distinct and exhaust the set of words of length 2 in the corre-
sponding free group,

is isomorphic either to G or to the group
G~ ={(az,y|2*y* =yz~').

M. Edjvet has pointed out that G and G~ have distinct Alexander poly-
nomials, and so are not isomorphic.

3. Another crucial feature of our argument is the fact that the faces of T
meet at an angle of /3. The corresponding angles for the cube and regular
octahedron are easily computed as 7/3 and n/2, respectively.

4. The subgroup of index 2 in G is the group

L={zy|yzy layz "y ey lz™")

of the figure-eight knot. We have not yet computed the growth series of L.
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Exceptional representations of PSL,(q)

of monodromy genus zero

Gareth A. Jones

Dedicated ta Murray Macbeath on the occasion of his retirement

Abstract. We determine the values of ¢q for which PSL,(q) , acting on the cosets of a

subgroup isomorphic to A,, S, or A5, has monodromy genus 0.

1. Introduction

The monodromy genus v(G; Q) of a finite transitive permutation group
(G, Q) is the least genus of any branched covering S of the Riemann sphere
with monodromy group (G, 2); the monodromy genus 4(G) of a finite group
G is the minimum of 4(G; Q) as Q ranges over all faithful transitive repre-
sentations of G, that is, the least genus of any S with monodromy group
isomorphic to G.

It is well-known [7] that cyclic, dihedral, alternating and symmetric
groups all have genus 0. On the other hand, Guralnick and Thompson [3]
have conjectured that at most finitely many simple groups of Lie type can
be composition factors of monodromy groups of any given genus; Liebeck
and Saxl [8] have verified this for simple groups of bounded Lie rank, but
the general problem remains open.
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In [5] I determined those ¢ for which the natural representation of G =
PSL;(q) on the projective line & = PG;(¢) has genus 0 (all the prime-powers
q < 43 except 23, 27, 31 and 32). It is hoped eventually to determine all
q for which PSL;(q) has genus 0 (in any representation), and to do this it
is sufficient to consider the primitive representations, those for which the
stabilisers H = G4(a € ) are maximal subgroups. Apart from the natural
point-stabilisers, of index g + 1, the maximal subgroups of G are dihedral
groups, projective groups PSLy(¢') or PGL2(q") for certain ¢’ dividing g,
and exceptional subgroups H & A4, Sy or As arising for various q. My aim
here is to consider these last three exceptional representations of G (whether
primitive or not), and to prove the following

THEOREM. Let G = PSLy(q) and let @ = G/H, where G > H = A4, S; or
As. Then v(G; ) = 0 if and only if

(i) g=4,5,7,90r13 for H Ay
(1) q=7,90r17 for H=S5;
(1ii) q=09,11,190r 29 for H = As.

(These representations are all primitive, except those for ¢ = 7 and 9 in
case (1)).

The proof follows that in [5] for the natural representation of G, with a
major role being played by Macbeath’s analysis [9] of generating triples for
PSLy(g).

2. Monodromy groups. ([3], [5], (6], [7], [10])

Let ¢ : S — ¥ be a connected n-sheeted covering of the Riemann sphere
Y = CU{oo} , branched at P = {p1,...,pr} C . If pp € £ — P, then
the fundamental group II = 7,(¥ — P;po) induces, by unique path-lifting,
a transitive group G of permutations of the fibre & = ¢ ™!(py) C S, called
the monodromy group of S (or strictly, of ¥). Since I has presentation

H={(s1,...,8¢ | $1...8, =1),

where s; is the homotopy class of a suitable loop around p;, G is generated
by permutations g; (1 < ¢ < r) induced by s;, satisfying

gr...gr=1. (2.1)
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Conversely, every transitive finite permutation group, with generators
g1,...,9- satisfying (2.1), arises in this way for some ¢ : § — X.

The genus « of S is given by the Riemann-Hurwitz formula
=1 1B 2.2
y=1—-n+ 5 ) (“'“)

where B is the total order of branching of 1». Now the order of branching
at p; is n — |9~ (pi)| = n — v(gi), where v(g;) is the number of cycles of g;
on 2 ,s0

y=1 —n+%Zﬂ(gi), (2.3)
where
B(g) =n —v(g) = 9| - |2/(g)|- (2.4)

The monodromy genus v(G; Q) of a transitive finite permutation group
(G, Q) is the least genus v of any S with monodromy group (G,Q); it is
obtained by minimising (2.3) over all generating r-tuples g = (g1,...,9,) in
G which satisfy g, ...¢, = 1. It is convenient to denote by K the multiset
{k1,...,k.}, where g; has order %k;, and to let A(K) be the group with
presentation

A(I():(sl,...,sr|sf1 =...=sh =5 ...5=1),

so that A(') maps onto G in the obvious way.

In addition to proving the Theorem, I shall also determine the multi-
sets K arising in each case. They are given in Table 1, where semi-colons
separate different multisets, and 2(3) denotes 2, 2, 2, etc.
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H q n K
4,5 5 |20 3: 22 3. 2 303, 3(4); 235 335
7 | 14 2,37 3,3,4

A4
9 30 | 3,3,4
13 | 91 | 2,3,7

. . 2(9), 2(4)’3; 2(4)’4; 2(3)’7; 2(2)’3(2); 22) 3 4
22) 4. 2.3 7, 2,4,7; 3,3,4; 3,4,4; 43

Sal 9| 15 2<3),4; 9,4,5; 3,34

17 {102 | 2,3
9(5) 2(4) 3 203) 3(2). 2(2) 303); 2 3(4). 3(5),
9 6 9(3) J4; 9(3) , 55 9(2) 3(2) 9(2) ,3,4; r)() ,3,5;
) 3(3) 2 3(2) 4; 2 3(2) 5; 3(4) 3(3) 4; 3(3) 5;
H,45,H,55 334 3,3,5; 3,4,5; 3,5,5
As aln 203, 203) 5. 203) ¢, 2 3(2); 2 3 11;
2,55 H,56,H,66 335 3,3,6
19 | 57 } 2,3,9; 2,3,10

29 1203 | 2,3,7

Table 1

Instances in which PSLy(q), acting with degree n on the cosets of a subgroup
H = A4, S4 or As, has monodromy genus v = 0. The multisets i’ indicate
the orders of the generators ¢; associated with the branch-points.

3. Existence and conjugacy of exceptional subgroups. ([2], [4], [11])

From now on, G denotes PSLy(g), where ¢ = p® and p is prime; we
have |G| = ¢q(¢® — 1)/d where d = (¢ — 1,2). Table 2 gives the numbers of
conjugacy classes in G of exceptional subgroups H = A4, S4 or As, the size
of each class, and the cases where H is maximal in G. (Whenever there are
two classes, they are conjugate in PGL;(q).)
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H q O?%ﬁgggs size of class maximality
= 92f/+1 0 - -
Ay | =2% 1 |G|/12 =4
= +3(8) 1 |G|/12 e =1and ¢ = £2(5)
= +1(8) 2 |G|/24 no
S, # +1(8) 0 - -
= +1(8) 2 |G|/24 g=9ore=1
= 92f+1 0 _ -
=22 1 |G|/60 f odd prime
As | =52+ 1 |G|/60 e odd prime
=52/ 2 |G|/120 no
= +3(10) 0 - —
= +1(10) 2 |G|/60 e=1, or
e =2 and p = —1(10)

Table 2

4. Conjugacy classes in G

To prove the Theorem, we find all solutions g = (g1,...,¢,) in G of the

equation
T

2n—2= f(g:) (4.1)

i=1
or equivalently
1 ~ B(g)
2{1——-] = — 4.1
(1-3) =2 (@1

obtained by putting v+ = 0 in (2.3); we then determine which of these
solutions generate G and satisfy ¢g; ...¢9, = 1.

In order to solve (4.1'), we must first evaluate 8(g)/n for each g € G.
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By the Cauchy-Frobenius Lemma ([4], V.13.4)

1< .
v(g) =1 2_7(s") (42)
and so . .

where k is the order of g and 7(h) = [{a € @ | ah = ao}|. A simple argument
(5], counting such pairs (a, h) in two ways, gives
mh) _ €0 H]

el (4.4)

where C is the conjugacy class k¢ of G containing h, and H = G, (a € ).

If C is to have non-empty intersection with H, its elements must have
order £ < 5; Table 3 lists all such non-identity classes C, also giving infor-
mation needed in §5 on whether C is invariant under inverting or squaring
its elements.

(] 4 |ofumemc| o |[c=c7|c=c%
2 1 | 1Gla-8 | ves no
3 = 3¢ 2 3(*—1) | iffe=2f |iffe=2f
# 3¢ 1 q(q +¢) yes yes
4 | = £1(8) 1 q(q+9) yes no
£ £1(8) 0 - - -
= 5¢ 2 %(q2—1) yes iffe=2f
5| = £1(5) 2 q(q¢+¢) yes no
= £2(5) 0 - - -
Table 3
In this table,
{1 if ¢ = 1(4),
§=1¢ ~1 if ¢g=-1(4),
0 if ¢g=0(2);

similarly, e = +1 as ¢ = £1(3) and ¢ = %1 as ¢ = £1(5).
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5. Conjugacy classes meeting H

If non-empty, C' N H must be a union of conjugacy classes of H. These
are well-known, and it is easily seen that C N H must consist of all the
elements of order £ in H, except possibly in the cases £ = 3 for H = A4,
and £ = 5 for H & As, which we now consider.

Ay has two mutually inverse classes of four elements of order 3. If p # 3
the unique class C of elements of order 3 in G contains both H-classes, so
|CNH|=8. If ¢ =3+ then the two G-classes, being mutually inverse,
each satisfy |C N H| = 4; if ¢ = 32/, however, the two G-classes are self-
inverse, so one has [CNH| = 8 and the other |[CNH| = 0. Similar arguments
apply to H & As, which has two self-inverse classes of twelve elements of
order 5, each the square of the other. In this way one can easily compute the
values of |C'N H|/|C| required in (4.4), as shown in Table 4, where 8, ¢ =0
and 2 for the two classes C.

£ q H A4 H = 54 H = A5
0 3(g—96) | Ag—198) | 15(g—9)
|G| |G| |G|
8
_ a2f+1 _ _
3 po—
3 | _a 86 86 206
-1 1 ¢-11] ¢£-1
8 8 20
# 3¢
g(g+e) | d(g+e) | alg+e)
6
4 0 0
q(q +9)
24
= 52f+1 —
0 peia)
9
5 | =5 0 0 2“4"5
g-—1
= +1(5) 0 0 12
B g+ 9

Table 4 (values of |C'N H|/|C|)
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6. Proof of the Theorem, case (i)

Suppose that G > H = A,. The only powers h = g/ which can make
non-zero contributions to (4.3) have orders £ = 1, 2 or 3. The identity
clement h = g* = 1 has m(h) = n. If k is even then by taking j = %k we
find an involution h = ¢7, and if k is divisible by 3 there are two mutually
inverse elements h = ¢’ of order £ = 3.

(a) Assume first thatp > 5, so |G| = 3q(¢* — 1) and n = ¢(¢* —1)/24. By
(4.4) and Table 4, a power h = g’ of order £ = 2, if it exists, has

and any powers h of order ¢ = 3 have
m(h) 8
n qlgte)
If we introduce the useful convention that for any proposition P

1 if Pis true
Pl =
[P) {0 if P is false

we can therefore write (4.3) in the form

@_ 1 ] 6 16
o =1 k(1+[2|A]q(q+5)+[3|k]—q(q+6)>. (6.1)

This clearly implies that

Bl9) 1 22
n 21_%(1+q(q—1)>’ (62)

though for specific values of k we can generally find better bounds. Assum-
ing that ¢ > 7, we see that

B(9)

n

v
ol o

whereas (4.1') implies that

~ B(g:)
; —C <2

Thus r < 5. Now G is not cyclic,sor > 2 and hence r=3orr=4.
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Assume first that r = 4. If ¢ > 11 then

2 4
Blo) 2 _?’_, 3 for k=2, k> 3 respectively,
n 5 55
so to satisfy (4.1') each g; must have order k; = 2for: = 1,...,4. However,

the group A(2(*)) is soluble, so it cannot map onto G, and this case does
not arise. If ¢ = 7 then

ﬂ(_g):i é, §, 5 for £=2,34,7

n 7T
(these being the only orders of non-identity elements of G), so the only pos-
sibility is that I{ = {2(3) 3}. However, such a 4-tuple g cannot generate G:
if it did, then by applying the Riemann-Hurwitz formula to the represen-
tation of G (= PGL3(2)) of degree 7 we would get genus v = —1, which is
absurd.

Now assume that r = 3. First let K = {2,3,7}, so that G is a Hurwitz
group, that is, a finite image of A(2,3,7). By putting t = 2, 3 and 7 in
(6.1) we see that

Bo) 1__ 3 _1__3
no 2 q(g+8) T2 qq-1)
Plo) _2_ 16 2 16
n 3 3q¢(gte) T3 3q(¢g—1)
plgs) _ 6
n 7
. ﬂ(gl)
N 4.1 2
ow (4.1') gives > Z -
85 25
> e —7
T 42 3¢(¢-1)
25
so that g(g—1) < 42- i 350

and hence ¢ < 19. Macbeath [9] has shown that PSL;(q) is a Hurwitz group
if and only if ¢ =7, 0or ¢ = p = +1 mod 7, or ¢ = p® where p = +2 or +3
mod 7. Thus the only possibilities are ¢ = 7 and ¢ = 13, and in each case
one easily sees that g satisfies (4.1), so both cases arise.

Now suppose that the triple K # {2,3,7}, so

1
Z;Tiso

b
w

§
=
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(attained by K = {2,3,8}). For: =1, 2, 3 we have

n ki q(g—1)
by (6.2), so 2> Zﬂ(,f')
22 1
23_( +q(q—1)>zlz
Thus 1+%>(Z%>—12%

and hence ¢ < 23, s0 ¢ =19, 17, 13, 11 or 7.

If ¢ = 19 then n = 285. The non-identity elements ¢ € G have orders
k=2 3,5 9,10 and 19, with 8(g) = 140, 186, 228, 252, 256 and 270
respectively. It is straightforward but tedious to check that there is no
solution of the ‘Knapsack Problem’ (4.1)

3
> B(g:) = 2n — 2 = 568,

=1

so the case ¢ = 19 does not arise. The cases ¢ = 17 and ¢ = 11 are
also eliminated by this method. For ¢ = 13 (with n = 91) we find only
the solution 44 + 58 + 78 = 180, corresponding to the triple K = {2,3,7}
already listed. For ¢ = 7 (with n = 14) the only solutions are 8+8+10 = 26
and 6 + 8 + 12 = 26, corresponding to the cases K = {2,3,7} (again, listed
earlier) and K = {3, 3,4} where results of Macbeath [9] imply that PSL2(7)
is indeed an image of A(K).

There remains the case ¢ = 5. This representation is the same as the
natural representation of PSL2(4), and in [5] it is shown that this has genus
0 for the six multisets K listed in Table 1.

(b) Now suppose that p = 3. If g has order k then

ple) _,_1 6 ., 166
k. k(1+[2|k]q(q+5)+[k_3]q2—1>

1 32
1—= —_—
k(1+q2—1>

0_{00r2 if e is even,

1 if e is odd.

v

where
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As in (a) we must have r = 3 or r = 4. If » = 4 the only possibility is
K = {203} with ¢ = 9, and as in [5] we can eliminate this case by applying
(2.3) to a representation of G (= Ag) of degree 6, obtaining v = —1.

Hence r = 3. If K = {2,3,7} then arguing as in (a) we obtain ¢(¢—1) <
574, so ¢ = 9, impossible since PSL,(9) is not a Hurwitz group [9]. Thus
K # {2,3,7}), s0 k7' < 2 and the argument used in (a) now gives
q < 27. If ¢ = 27 we soon find that there are no solutions of (4.1) in G, while
for ¢ = 9 the only solutions correspond to multisets K = {2,3,5}, {2,4,4}
and {3, 3,4} (where 3 and 3 denote generators g; of order 3 with (g;) = 16
or 20 respectively). Groups generated by triples g of the first two types
must be isomorphic to Aj or soluble, but the third type can generate G: for
instance, we can identify G with A¢ and take g, = (123), go = (145)(236),
g3 = (1543)(26).

(¢) Nowletp = 2,50 |G| = ¢g(¢® — 1) and n = ¢(¢® — 1)/12. Since
G>H=A,,eiseven,sogq=1mod 3and e =1. If g € G has order k (=
2 or odd), then

@:1—%(14'[’6:2](123_1 +[3|k]q(q1'?'1)>

d(ets)

The case ¢ = 4 was dealt with in (a), since PSLy(4) & PSL,(5), so we
can assume that ¢ > 16. Arguing as in (a) and (b) we find that r = 3 or
4, and that the latter case leads only to &' = {2(*)}, which is impossible.
Thus r = 3.

Macbeath [9] has shown that PSL;(2¢) is a Hurwitz group only for e = 3,
so K # {2,3,7}. Hence k7' < 28 | and arguing as in (a) and (b) we find
that ¢(¢ —1) < 16-23. Thus ¢ = 16, and we find that there are no solutions
of (4.1) in G.

7. Cases (ii) and (iii)

The proof is similar for H = Sy or As. The only extra ingredient is
that for certain ¢ and K, character theory is used to determine whether
or not a particular solution g = (g;) of (4.1) generates G. For example, if
H = S;and ¢ = 9 (so G £ Ag and n = 15) the multiset K = {3,3,5}
satisfies (4.1), where the generators gy and g, of order 3 are conjugate, with
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B(g1) = B(92) = 8 and B(g3) = 12; now the character table [1] shows that
G has 1440 such triples g with g1g293 = 1, but since G has 12 subgroups
isomorphic to As, each generated by 120 such triples, none can generate G.
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On the rank of NEC groups

Ralf Kaufmann and Heiner Zieschang

To Murray Macbeath on the occasion of his retirement

Abstract. For some NEC groups we show that the geometric rank and the algebraic
rank differ seriously, namely their ratio can be 3 : 2. Moreover, we give examples of free
products of two groups with an amalgamated subgroup where the rank of the product is
much smaller than the sum of the ranks of the factors minus the rank of the amalgamated

subgroup.

0. Introduction

In 1964 A.M. Macbeath posed the following question to the second au-
thor: Does the group I' = (z1,...,25 | 23, 3, 23, =], zi!, z122232425)
need at least 4 generators? This question was originally considered by J.
Nielsen. The group I' is a Fuchsian group and admits a fundamental poly-
gon with 4 pairs of equivalent sides. Every pair determines a generator, for
example, ¢,%3,%4,%5. By simple arguments using the Euler characteristic
it can be proved that every system of such “geometric” generators contains
at least 4 elements. Call this number the geometric rank gr(I'). The mini-
mal number of generators of a group I is called the rank of I' and is denoted
by rg(I'). Clearly, rg(I') < gr(I). Thus the question of Nielsen is whether
geometric rank and group-theoretical rank coincide.
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This question has been considered for arbitrary Fuchsian groups in [10]
where it was claimed that the answer is positive. However slightly later
Burns, Karrass, Pietrowski and Solitar showed that the Fuchsian group
Ty = {c1,¢2,¢3,¢4 | €3, c3, c3, c2**1) cicocscy), k > 0 is generated by
z =cce and y = ¢;c3. Now

xy_lw_ly = C1Cq * C3C) " C2Cy * C1C3 = (010203)2 =cy

2

This implies that ¢4 = (c1¢2¢3)7" € {2, y) (the subgroup generated by z,y).
A consequence is that ¢z € (z,y) and therefore also ¢1,¢; € {(z,y). The
geometric rank of [y, however, equals 3. Later it was shown that this is,
more or less, the only example of a Fuchsian group where the two concepts

of rank differ.

This counterexample has a very interesting consequence. F. Waldhausen
asked in [8] whether for a closed orientable 3-manifold M? the minimal genus
of a Heegaard decomposition of M3, h(M?), is equal to the rank of its fun-
damental group: h(M?) = rg(mM3). (By the Seifert-van Kampen theo-
rem, rg(m M?) < h(M?).) Using the example of Burns-Karrass-Pietrowski-
Solitar it can be shown that the question has a negative answer for some
manifolds, namely for Seifert fiber spaces with basis S, three exceptional
fibres of order 2 and one exceptional fibre of odd order, see [1].

A generalization of Fuchsian groups are discontinuous groups which con-
tain also orientation reversing conformal mappings. These groups are called
NEC groups and were considered and classified by Wilkie [9]. The geometric
rank of these groups is as one expects, see section 1. If such a group does
not contain reflections the rank has also been determined in [7]; it equals
the geometric rank. From the Burns-Karrass-Pietrowski-Solitar example it
is clear that the situation becomes much more complicated if reflections ap-
pear since they define generators of order 2. We will give further examples
where the rank is less than the geometric rank. In fact, we describe some
NEC groups I' with rg(I") = % gr(D).

Often a Fuchsian or NEC group can be written as free product of two
groups with amalgamation: I' = A *¢ B. An open question is the relation-
ship between the rank of I" and the ranks of A, B, C. For decompositions of
Fuchsian groups, rg(I") > rg(A) +rg(B)—2-rg(C); a similar result is true for
the NEC groups considered below. For arbitrary groups I', however, there
cannot be a general formula of a form rg(T") > rg(A) + rg(B) — k - rg(C),
k € Z as an example of M. Lustig shows.
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1. On the geometric rank of NEC groups

A NEC group (non-euclidean crystallographic group) is a discontinuous
group of motions of the non-euclidean (= Bolyai- GauB-Lobachevskii or hy-
perbolic) plane. A model of this plane is the following: Take the upper
half-plane of the euclidean plane H = {z € C : Im z > 0} as point set
and half-circles or halflines orthogonal to the real axis of the geometry as
lines. Distances are defined using suitable cross ratios. The special group
of linear fractional transformations with real coefficients:

az +b
cz+d

PSL(2,R)={w= : a,b,c,d €R, ad—bc:l}

is the group of orientation preserving motions. The set of orientation re-
versing motions is

{w: af+b : a,b,c,d €R, ad—bc:—l} .

cz +d

A subgroup ' of the group of motions operates discontinuously on H if
there exists an open subset V' C H such that V' N f(V) # @, f € T implies
f =1idn.

Every NEC group T' adrmts a fundamental polygon, that is a polygon

P C H with the property that Pﬂf(P) # 1§, f € T'implies f = 1. By P we
denote the interior of P and by 0P the boundary of P in H. The sides of P
are segments, lines or halflines with respect to the non-euclidean geometry,
i.e. segments of euclidean circles or halflines in H which are orthogonal to
the real axis. In general, the number of sides can be infinite. There may also
appear segments of the closed real axis RU{oo} in the boundary of P if P is
considered as subset of CU{oo}, but these parts are not interpreted as sides
of P. Given a side ¢ C OP, then there is a unique transformation v € T
such that P N~(P) = o; hence, every side of P determines an element of T'.
Clearly, y~!(o) is also a side of P and it determines the transformation y71.
These two sides may be the same, namely if 4 has order 2. Then « is either
a rotation of order 2 (if ¥ preserves orientation) or a reflection along some
line (v reverses the orientation). Let N(P) be the number of such pairs
{v,77!'}. We obtain a system of generators of I if we take from each pair
one transformation. A system selected this way is called a geometric system
of generators associated to P. It contains N(P) elements. The minimum of
{N(P): P fundamental polygon of I'} is called the geometric rank of I" and
is denoted by gr(I'). The NEC group T is of finite type if the geometric rank
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is finite, that is if there exists a fundamental polygon for I' with a finite
number of sides. In particular, this is the case when I admits a compact
fundamental polygon.

NEC groups of finite type were introduced and classified up to topologi-
cally equivalent actions by Wilkie [9] for the case of a compact fundamental
domain and in [5] and [11] for the general case. The generators described
there are geometric; hence, their number is an upper bound for the geomet-
ric rank of the NEC group presented.

The classification of NEC groups of finite type is conveniently explained
using the orbifold corresponding to the action of I' on H and the quotient
mapping. Let us do it for the case of compact fundamental domain. The
orbifold B = H/T' (= space of orbits with the quotient topology) is a surface
of finite type obtained from a closed surface of some genus g by cutting out
a number of (open) disks. The result is a compact orientable (+) or non-
orientable (—) surface of genus ¢ with a number ¢ of boundary components
Ci,...,C,. The boundary points of B are the images of points of H which
lie on axes of reflections of I'. The quotient mapping m:H — B behaves
as a covering at all points except at those which are not fixed points of
rotations or reflections of I'. At a rotation center which does not lie on a
reflection axis the projection = behaves as a branched covering at a branch
point. On B there are only finitely many, say m, points of this type with
branching numbers hy,...,hn. If two reflections axes ¢;,co intersect in a
point € H and the angle between the two lines is o then the product ¢, c;
is a rotation along = of angle 2. On the boundary component C;, 1 <: < ¢
there are the images of some number m; of inequivalent rotation centers;
the case m; = 0 is possible. The images of rotation centers define a cycle
(hijn, hi2y- -y him;) of rotation orders. If the surface B is orientable we fix
some orientation of B, and this induces an orientation on every boundary
component. Now the topological type of I" is described by the following
stgnature (where € = +):

(g, o m:hl,...,hm; q:{(hl,l,---,hl,ml),---,(hq,l,-~~;hq,mq)})-

Without changing the type of the NEC group we can do the following;:

— the enumerations of the h; and of the boundary components C; can
arbitrarily be changed;

— if the surface B is non-orientable the cycles (hj1,-..,hjm;) can be
independently reversed;
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— if B is orientable all cycles (hj;,1,--.,hjm;) can be simultaneously
reversed.

Two NEC groups with compact fundamental polygons are topologically
equivalent if and only if their signatures are related by the above
procedures [9]. This condition is also necessary for NEC groups with com-
pact fundamental polygon to be isomorphic [12, 4.6, 3.4].

By cutting B along suitable arcs we obtain a disk which does not contain
images of rotation centers in its interior. Let a = 2 if ¢ = +, otherwise
o = 1. The minimal number of arcs needed is ag+m+g—1ifm > 0org > 0
and ag if m = ¢ = 0. Lifting the cut arcs to H we obtain a fundamental
polygon P. Each of these arcs is covered by two sides of P, except when
the arc ends in the image of a rotation of order 2. The other sides of 0P
are in a 1-1 correspondence with the different segments on the C;. Thus
the polygon P has 2ag +2m +2g+ > i_, m; — 2 or 2ag sides, respectively.
The number of equivalent pairs of sides is ag + m + g+ > !_, m; — 1 or ag,
respectively.

1.1 PROPOSITION [6]. If the NEC group I has the signature

(g;E; m:hl,...,hm; q: {(hl,l,---,hl,ml),---,(hq,lr--ahq,mq)}),

then . )
gr(I,)={ozg+m+q+zi=lm,-—1 1fm+f1>0,
ag otherwise.

Herea =2 ife = +, or else a = 1.

PROOF. We obtained above that the expression on the right side is an upper
bound for the geometric rank. The other direction has been proved in [6,
Theorem 3]. 1

The (topological) classification of NEC groups of finite type but without
compact fundamental polygon is done in a similar fashion; however now the
holes may be “open” or contain “open segments”; for details see [5], [12,
4.11).

2. An upper bound for the rank of some NEC groups

As remarked above the rank of Fuchsian groups and of NEC groups
without reflections has been determined in [7]. There are many different
types of NEC groups with reflections and it seems complicated to deal with
them in general. We will consider the simplest interesting new cases, namely
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the cases with basis $? and one boundary component, that is a NEC group
with signature (0; +;0; 1: (h1,...,hn)). We start with some simple general
considerations.

2.1 LEMMA. Let
H = {c;,c2,c3 | c3,c2,¢3,(c1¢2)%, (e2e3)F) withk =20+ 1.

Then rg(H) = 2.

PROOF. Define z = co, y = ¢;¢3. It suffices to prove that c; is contained in
the subgroup (z,y) < H generated by z and y. From
wyx_ly_l =cy-C1C3 " 02—1 . cs"lci~l

2 ~1
= ¢1c2c30203¢1 = ¢ - (C203)° - €]

(for the second step the relation (c1c2)? = 1 is crucial) we obtain for A € Z:

(zyz 'y = ar(caes) e,
(wyw“ly_l))‘ LY = 01(0203)2)‘01 - CaCyC3
— 61(6263)2)\-'-1;
for A = ¢, in particular, it follows that ¢, is a product in z,y. 1

2.2 COROLLARY. (a) Let G be a group, U < G a subgroup and o: H - U
an epimorphism. Then rg(U) < 2.

(b) Let Uy,...,Up be subgroups of G each of which 1s the image of a
group H of the form as in 2.1 (possibly with different £’s). Then the rank
of the subgroup (U!_,U;) < G is at most 2p:

rg({UlZ, Ui)) < 2p. |

Next we apply this result to the NEC groups mentioned above.

2.3 PROPOSITION. Let

(I)G:(cl,...cn|c?~, 1<j<m (C]'C]'+1)hj, 1<j<n-1)and
(2)F:(c1,...cn|c§, 1<j<n (c]-c]-+l)hi, 1<j5<n—1, (cae))).

Assume that there are p disjoint (‘critical’) triples (j,7+1, 7+2) in which one
term equals 2 and one of its neighbours is odd. Thenrg(I") < rg(G) <n—p.
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Proo¥F. This is a direct consequence of 2.2 since G is generated by ¢1,...,¢n
and there are p disjoint triples cj, ¢j41,cj4+2 Where two elements suffice to
generate (cj,Cjt1,Cjt2). B

2.4 PROPOSITION.

gr(l')=n.
ProoF. By 1.1, the geometric rank of the group above equals 2-0 4+ 0 +
l+n—-1=n. 1

2.5 PROPOSITION. There are NEC groups ' with rg(T') < 2 gr(T'). There
are groups with rg(T') = 2 gr(T).

ProOF. Take n = 3v, v € Z and define

2 ifi:=2mod3 with);>1,1<:<3v.

2X;+1 if:=1mod 3
h,:{u
2 if =0 mod 3

Then (hy,...,hy,) contains v disjoint critical triples and, therefore,
gl)<n—v==2n=2g(D).

We introduce the new relations ¢3j41 = ¢3j42, 1 < j < v and abelianize the

group I. This defines an epimorphism I' — Z3¥; hence rg(T") > 2v = %n.

The last argument also proves the following.

2.6 PROPOSITION. IfT" has the signature (0;+;0; 1: (h1,...,hs)) and all
h; > 0 are even then I' has rank n; hence, by 2.4, rg(T') = gr(l') =n. 1§

Even for NEC groups with the special signature (0; +;0; 1: (hy,..., hy))
the rank is not known. The Nielsen method offers a way to calculate the
rank, but this is very cumbersome as we will see when we determine the
rank for the simplest cases.

2.7 PROPOSITION. The NEC groups
G = (61,62,63 |C%’ Cga Cga (6162)h, (6263)k)
with odd h, k > 2 have rank 3.

PROOF. Assume that z,y generate G. Write G as a free product with
amalgamation:

G = (c1,¢2 | cf, cg, (C1C2)h) *(cp) (€2, €3 | cg, cg, (0203)k) = A*¢c B.
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This free product structure defines a length L on G. We apply the theorem
on the Nielsen method for free products with amalgamation ([10, Satz 1] or
[3, 4.1]) and reduce the generators ,y according to the length as often as
possible. Assume that finally we obtain generators, again denoted by z, v,
such that every w € G is written as a word in letters z,y which have length
not bigger than L(w). It easily follows that ¢, ¢z, c3 cannot all be expressed
as words in z,y.

There are two types of obstructions to getting a situation of this type:
(a) There is an element of {z,y}, say z, in the amalgamated subgroup
C = {c2) and there is an element v € (A—C)U(B~C) such that vav~! € C.
(b) One element or both lie in a subgroup of G conjugate to one of the fac-
tors A, B and some power of this element or some word in both, respectively,
becomes shorter.

Case (a): Since the only non-trivial element of C is c3, it follows = = ¢,.
Assume that v € A. Then we have to solve the equation v ¢c; v~ = ¢; in
the dihedral group A. The only solutions are 1,¢; € C since h is odd and
> 2. (This is the only place where we use the assumption that h, & are odd
and > 2 and this makes the difference to 2.1.) Therefore case (a) cannot

appear.

Case (b): Clearly z and y cannot both lie in the same conjugate of A or
B. Therefore we may assume that

(1) z lies in a conjugate of A, by [10, (2.4)(a)] and symmetry;

(2) = does not lie in C, by [10, (2.4)(b)];

(3) a power of = is conjugate to a non-trivial element of C, by [10,
24)(0))-
After conjugating ¢ and y by the same element, we may assume that

(1) z lies 1n A;

(2") « does not lie in a conjugate of C' and in particular z ¢ C;

(3") a power of z is conjugate to a non-trivial element of C.
However ¢, is the only non-trivial element of C' and is not a proper power
of an element in A, contradicting (2'). 1

By further considerations one can also prove that rg(G) = 3 if A,k are
allowed to be even (h > 2). Similar arguments can also be given for groups
with more generators, and for NEC groups of the type 2.3(2), but this
becomes rather cumbersome.
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3. On the rank of free products with amalgamation

In this section we describe an example of M. Lustig which shows that
a result like the Grushko theorem does not hold for free products with
amalgamated subgroups.

3.1 PROPOSITION. The group

X ={(a1,...,an,b,c1,...,¢q |a§, c?, b2, (ajb)?, (be;)* %, 1<j<n)

- ji(b)(aj,b,cj | a3,83,¢5, (a;8)?, (be;)* 1)

is generated by the set {x = b, y; = ajc; 11 < j <n}.

Namely, by 2.1, the elements b and ajc; generate

(aj,b,¢; | a3,8%,¢5, (a;8)?, (be;)*™i*1).

3.2 LEMMA. (a) Let U = {a1,...,an,b | b2, a?, (a;8)%, 1 < j < n). Then
rg(U)=n+1.

(b) Let V = (b,c1,...,cn | 8%, %, (be;)™, hj > 2, 1 < j <n). Then
rg(V) >3- (n+1).

(c) If there 1s a number p > 1 such that p|h; for 1 < j < n then
rg(V)=n+1.

PROOF. (a) The group U has the group Z;*! as a factor group and is
generated by n + 1 elements.

(b) Consider the homomorphism
wV =172y ={1,-1}, b,¢y,...,cp— —1.
By the Reidemeister-Schreier method, ker(w) is generated by
T =0 y; =c;db7", z; = be;j with 1 < j <n,
and the defining relations are
T, Y;z;, y?j, Z?’) 1<j<n;

hence
h n\ ~
ker w = (yl,...,yn|y11,...,yz YLy, x .. Ly, .
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By the Grushko theorem, rg(kerw) = n. If V has rank r then every subgroup
of index 2 has a rank of at most 2 (r — 1) + 1 as follows from the formula
for subgroups of free groups (see [12, 1.6.1]). Therefore

1
Ar=1+12n =rg(V)2(n+1)

(¢) Consider the homomorphism
p LV — Z/pl, b,cry. .. cp > —1.

We consider this as a mapping to the ring of 1 x 1- matrices with coefficients
in the ring Z/pZ. Then the conditions of [4, Corollary 1] are fulfilled; in
particular, the images of the Fox derivatives [2, p. 123-125] of the defining
relations vanish:

32\’ _[p(l+c)=0modp ifi=j,
dc;) | p(0)=0 otherwise;
(3(61'5)’“)” _ {p (14 ThS b)) = hi=0modp  ifi=j,
0

0c; otherwise;

b2\ "*
(5) -©
and similarly for the derivative 3/0b. By [4, Corollary 1] it follows that
rg(V)=n+1. 1

3.3 PROPOSITION. For every function d:N — N there exist groups U,V, W
such that
rg (U *w V) <rg(U) + rg(V) — d(rg(W)).

Proor. Take the group X from 3.1 and the groups U and V from 3.2.
Moreover let W = (b). Then X = U *w V, rg(X) =n + 1 and

rg(U)+rg(V)—d(1) > (n+1)+ %(n +1) —d(1).

For n > 2d(1) we have the required inequality. §

For a free product rg(U * V) = rg(U) + rg(V) by the Grushko theorem.
A similar statement with subtraction of a multiple of the rank of the amal-
gamated subgroup does not hold for free products with amalgamation as
pointed out in Proposition 3.3.
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The geometry of bending quasi-Fuchsian groups

Christos Kourouniotis

1. Introduction

In this article we begin the study of properties of the deformation of
quasi-Fuchsian structures defined in [K2]. We calculate the first and second
variation of the length and the rotation angle associated with a simple
closed geodesic when the structure undergoes the deformation determined
by bending along another simple closed geodesic, and prove certain basic
relations between these variations.

Let S be a closed surface of negative Euler characteristic. We consider
homomorphisms p : m(S) — PSL(2,C) such that ' = imp is a quasi-
Fuchsian group and H3/I" & $ x (0,1). Two homomorphisms p,, p; define
the same quasi-Fuchsian structure on S if there is an inner automorphism
adA of PSL(2,C) such that p, = adA o p;. We shall denote the space of
quasi-Fuchsian structures on S by Q(S5). Inside Q(S) lies the subset of
Fuchsian points, which form the Teichmiller space T'(.S) of the surface.

The limit set of the group T is a Jordan curve. In [K2] the limit set
of ' was used to define a deformation on the space Q(S). For every mea-
sured geodesic lamination on S and complex number with sufficiently small
imaginary part this defines a mapping Q(S) — Q(S). This deformation gen-
eralises to Q(S) the Fenchel-Nielsen deformation studied by Wolpert [W1],
Thurston’s earthquakes, and the deformation of bending defined for hyper-
bolic manifolds of arbitrary dimension by Kourouniotis [[{1] and Johnson
and Millson [JM], and studied in greater generality in the case of hyperbolic
surfaces by Epstein and Marden [EM].
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Wolpert [W2] and Kerckhoff [Ke] have used the Fenchel-Nielsen defor-
mation and the geodesic length functions on T'(S) to study the geometry of
the Teichmiller space, in particular to give an intrinsic geometric interpreta-
tion to the Weil-Petterson metric on T'(S). In this article, we define complex
length functions on Q(S) determined by simple closed geodesics and calcu-
late their variations under bending. The formulae obtained reduce in the
special case of the Fenchel-Nielsen deformation to the well-known formulae
of Wolpert. Goldman [G] has obtained similar results for the first varia-
tion in a more general setting, without direct reference to the hyperbolic
geometry of the quasi-Fuchsian structure.

In Section 2 we define the notion of complex distance between two
geodesics in hyperbolic space: a complex number whose real part refers
to the distance between the geodesics and whose imaginary part refers to
the angle between them. This complex distance satisfies relations analo-
gous to those of hyperbolic trigonometry in the plane, [B], [K3]. In Section
3 we consider the case of the derivatives of the complex displacement of a
loxodromic isometry under elementary bending deformations. In Section 4
this calculation is extended to the case of the derivatives of the complex
length of a simple closed geodesic, under bending along a simple closed
geodesic. In Section 5 the complex length function associated to a simple
closed geodesic is defined on Q(S). Its first and second variations with re-
spect to bending are calculated and are shown to satisfy certain reciprocity
relations, analogous to those of Wolpert [W2] for real length functions.

2. The geometry of geodesics in H3.

We shall use the upper half plane H?> = {# € C, Im(z) > 0} and
the upper half space H* = {(z,y,2z) € R?, z > 0}, with their respective
Poincaré metrics. H? and H?® will denote the closure of H? and H? inside
c=cu {00} and R3®U{oo} respectively. The boundary of hyperbolic space
will be denoted by dH? = HZ — H? and OH® = H® — H®. The mapping
7 : SL(2,C) — PSL(2,C) will be the projection. Elements of PSL(2,C) will
be identified with the corresponding isometries of H3. All isometries of H3
will be orientation preserving and non-parabolic.

For v and v distinct points of C and ¢ € C, we denote by A(u,v, ) the
matrix

(cosh 3+ Esinh 1p =24 5inh 1o )
2 11 1 11
—~—sinh 3¢ coship — £ ginh 1y )’
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and by A(y) = A(0,00,¢) the matrix

te 0
A(Lp):(eo e_%‘P).

Note that A(u,v,¢) = A7 (u,v,—p) = A7 (v, u,p).
We shall use the following subset of C.

E={weC,7m>Imw > 0}
U{w e C,Imw = 0,Rew > 0}
U{w e C,Imw = 7,Rew < 0)}.

Let u,v, p,q, be four pairwise distinct points of C. We define the cross
ratio
(u—g)(p—v)
(v —p)g—v)
and extend it in the obvious way when one of the points is co. We identify
C with OH3. If u,v are in 8H?, we denote by (u,v) the oriented geodesic
from u to v in H?. Let a = (u,v) and B = (p,q) be oriented geodesics in
H3 with no common endpoints. There is a unique complex number o(a, 3)
in & such that

[uvpquv] =

[v,p,q,0] + 1
[u)p)qa U] -1

We call 6(«, B) the complez distance between the oriented geodesics o and

B.We have

cosho(a, B) =

O'(Ot, ﬂ) = U(ﬂv Ot),

and if —«a denotes the geodesic (v, u),

o(—a,B) = —o(a, f) + 17
We also define (o, a) =0 and o(a, —a) = o7

LEMMA 2.1. (i) Let o and § be geodesics in H® without common endpoints.
Then the hyperbolic distance between « and § 1s |Re(o(a, B))|. If a and
8 intersect, the angle between the positive rays of a and 8 is Im(o(a, 3)).
If they do not intersect let o' be the geodesic which intersects 8 and is
obtained by parallel translation of a along the common perpendicular of «
and 3. Then the angle between the positive rays of o' and 8 1s Im(o (e, 3)).

(1) If f € PSL(2,C) then o(f(«), f(B)) = o(a, B). |
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If & and f are two geodesics in H? without common endpoints, they have
a unique common perpendicular. We define an orientation on the common
perpendicular k44 in the following way. If Re(o(a, 8)) > 0 the orientation
of kep is from « to . If Re(o(a,8)) < 0 the orientation of k44 is from S
to a. If Re(o(a, B)) = 0, then o and B have a common point . We define
the orientation of kg so that the positive directions of «, g and x4g form
a right handed system at z. Note that ko3 = —kga = —K_ag-

Y

Fig. 1. The geodesics o, 8,7 and their common perpendiculars

Let o, 8,4 be oriented geodesics with pairwise distinct endpoints. We
shall define a sign €484 € {+1,—1}, which describes the relative orientation
of the geodesics. If «,f,v have a common perpendicular, then kqg, %+
coincide as unoriented geodesics. We define €44, so that k. = €48+ £+
Otherwise ko3 and &g, have no common endpoints and we define ¢44- so
that their common perpendicular is £43+43. Finally we define

8(e, B,79) = €apy0(Kap, Kp+)-

LEMMA 2.2. If «, (3, are oriented geodesics with pairwise distinct end
points then the sign €44~ satisfies

I E(~a)py = ~Eapy = Eap(—)-
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. Eapy = Ea(—p)y-

m. If o, B,y have no common perpendicular, €qgy = —€+a- |
The proofs of the following propositions are given in [K3].

ProrosITION 2.3. (HYPERBOLIC COSINE RULE) Let a, 8,v be geodesics

with pairwise distinct end points. Then

sinh o(a, B)sinh o( 8, v) cosh §( e, B, 7)
= cosho(a,v) — cosh o(a, B) cosh o( 8, 7). [ |

ProrosITION 2.4. (HYPERBOLIC SINE RULE) Let «,f,v be geodesics

with pairwise distinct end points, and let p be a permutation of {«, 3,7}
Then

sinh o(a, v) sinh 6(p(a), p(8), (7))
= signp sinh é(«a, §,7) sinh a(p(a), p(7))- |

COROLLARY 2.5. If «, 8,7 have a common perpendicular, then

cosh o(a,v) = cosh(a(a, B) + €ap~ o(5,7))-

PrROOF. When «a, §, v have a common perpendicular, then coshé(«, 8,v) =
Eaf~- [ |

Let f be a non-parabolic isometry of H? different from the identity.
Then f has an azis ay. Let 8 be a geodesic perpendicular to ay. The
ortented azis of f is the geodesic ay with the orientation of kg ¢5). We
define the complez displacement of f to be

wy = o(B, f(8))-

LEMMA 2.6. If f is a non-parabolic isometry of H® different from the
identity then

(1) wy 1s independent of the choice of j.
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(i) wf = wyg,-1 if g is an orientation preserving isometry of H3. In partic-
ular wf = wg-1.

(i11) f 1s conjugate to the isometry m(A(wy)).

PROOF. (1) Let v be an oriented geodesic perpendicular to ay. Then there
is an orientation preserving isometry g of H?® preserving oy and mapping
to . Moreover g commutes with f and

(7, f(7)) = a(9(B), 9 f(B)) = a(B, f(B)) = wy-

ii) The axis of gfg~! is g(ay) and ¢g(B) is perpendicular to it.
f

wgfg'l = U(g(ﬂ)vgf(ﬂ)) = U(ﬂvf(ﬂ)) = wf.

(iii) A non-parabolic isometry f is conjugate to m(A(w)) for some w € C.
Note that m(A(w)) is conjugate to m(A(2)) if and only if z = +w + 2km
for some k € Z. So there is a unique w € & for which f is conjugate to
m(A(w)). We must show that if w € ¥ then wr(4(w)) = w. For this it is
enough to check that

cosho((—1,1),(e”"¥,e")) = coshw. [ |

The complex displacement and the oriented axis of a non parabolic isom-
etry of H? determine it completely.

LEMMA 2.6. The 1sometry f with oriented axis oy = (u,v) and complex
displacement wy = ¢ 1s represented by the matrix Ay = A(u,v,p).
|

3. The derivatives of complex displacement

In this Section we shall use loxodromic isometries f,g,h with complex
displacements ¢, x, 3 and axes «, § = (u,v),y = (p, ¢) respectively.

A deformation of f is an analytic mapping F': U — PSL(2,C) where U
is a neighbourhood of 0 in R" or in C", and F(0) = f. In this Section we
calculate the first and second derivatives of the complex displacement w4
at 0 for certain classes of deformations associated to bending.

Let a € £ and let U be a neighbourhood of 0 in C such that aU C
YU (-X). Fort € U define G(t) = A(u,v,ta). If ta € T, then 7(G(t)) has
complex displacement ta and axis a4, while if ta € —X then 7(G(t)) has
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complex displacement —ta and axis —ay. Define the deformation F(t) =

7(G(¢))f and the functions
7(t) = tr(G(1)Ay)
w(t) = 2arccosh 37(t)
where we choose the sheet of arccosh that gives w(0) = ¢. Then

dw dr
3 1., - — 22
s1nh2w 7 i

If wy is in the interior of ¥, then F(t) has complex displacement w(t) for ¢
near 0.

LeEMMA 3.1. With the above notation w Is analytic at 0 and

dw(0)
dt

= acosho(ay, ay).

PROOF. Assume that o = (0,00) . Then

o (St0)

dt dt
=aZtZsinh%cp. (1)

Hence dw(0)/dt = a(v + u)/(v — u) = acosha((u,v),(0,00)). The lemma
follows by invariance. (]

Now we consider a two parameter deformation F(s,t) of f. F is an
analytic mapping F': U — PSL(2,C) where U is a neighbourhood of 0 in
R? or in C2.

Let a,b € ¥ and let U be a neighbourhood of 0 in C? such that
if (s,t) € U then sb and ta lie in © U (—%). Let H(s) = A(p,q, sd)
and define U(s) and V(s) to be the fixed points of 7(H(s))g on C, with
U(0) = »,V(0) = v. Let K(s,t) = A(U(s),V(s),ta). Define the deforma-
tion L(s,t) = m(K(s,t)H(s))f and the functions

7(s,t) = tr(I(s,t)H(s)Ay),

w(s,t) = 2arccosh%7-(s,t),
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where we choose the sheet of arccosh that gives w(0,0) = . At the point

(s,1)
—62—T = 2 sinhlwgw
st~ Os 270t
Jw Ow O?w
_ 1 1. .-~ H 1.7
=3 cosh W 5% Ds +s1nh2wasat
and ) ) L1
0w o°r coshsw Or 97
inh L — 1 W 07 07 5
R WGt = 350t sink? b 91 05 )

The rest of this section is devoted to the proof of the following lemma.

LEMMA 3.2. With the above notation, w Is analytic at (0,0) and

0%w(0,0)
O0s0t
= Sonhis s_l::h o sinh o(ay, af)sinho(ayg, an)cosh(§¢ — §(ag, ar,an))
92sinh %X Sinha(af’ag)SinhU(agaah)COSh(%X — 5(af,ag,01h)) .

PRroOOF. Assume that a = (0,00). Note that H(0) = id, K(s,0) = id and
K(0,t) = G(t). Hence L(s,0) = n(H(s))f and L(0,t) = n(G(t))f = F(¢).

From Lemma 3.1 we have

97(0,0) _ druess

inh 1
o & |, bsinh 5 cosh o(a,v) (3)
0r(0,0)  drams| .
= = asinh 3¢ cosho(a, ). (4)

It remains to calculate 827 /3s0¢. A rather long but elementary calcu-
lation gives

8?w(0,0)

dsdt R-5 (9)
where ; 2 ) N )
a 2(pq — uv 1 2(pq +uv ]
p=2| Apa—w) 1, APt uY)
2 [(U—U)(q—p) 20— w(g—»p)
and

S = a’_b 2(pq - uv)

"2 -wl-p B“’th?x]
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where )
_atp (+wig+p)  2(v+u)(pg +uv)

B g—p (v—uwg—p) (v—wig—p)

Now we want to replace the terms involving u, v, p, ¢ by expressions in
the complex distance between the geodesics «, 8, ¥ and their perpendiculars.
We have

v+u q+p
= cosh —= = cosho(a 6
LY cosho(a,p), L () (6)

and from the Hyperbolic Cosine Rule

—2(pq + uv)

G wg—p) ~ ho(A) — cosho(f,a) cosho(ary)

= sinh (8, o) sinh g(a, v) cosh 6( 5, o, ¥) (7N

and
2(pg —wv) _ —2((ép)(iq) + uv)

(v—u)(g—p)  —i(ig—ip)(v—v)
= :sinh ¢( 83, «) sinh o, 17) cosh §( 3, «, 1)

where 1y = (ip,1q). Multiplication by ¢ leaves « invariant, so o(a,ivy) =

o(a,y). Note that k4 (iy) = ikay and hence o(kq,y, Ka(iyy) = 7/2 and
KRaqy Ka(iy) = O So in this case we have ex,, x,, Kagiy) = EBax and by
Corollary 2.5
cosh (B, a,1y) = cosh [8(B, a,v) + €ga~ i7/2]
= tsinh §(8, a, 7).

Hence

_2pg —uv) = —sinh (¢, ) sinh 6(«, ¥) sinh §(8, a, 7). (8

(v —u)(qg—p)
We substitute (7) and (8) in R to obtain

b
R= —% _ sinh o(B,a)sinh o(a, ) cosh [%cp -85, a, 7)]

" 2sinh %cp
Using (6) and (7) we have

B = cosho(a,v) — cosho(a, B) cosha(B,7)
= sinh o(a, 8) sinh o(, v) cosh é(«, 3, 7)
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and hence

S = —T& [sinh § x sinh o( 8, @) sinh o(a, v) sinh §(B, &, )
2sinh 5 x

+ cosh %X sinh o(a, 8) sinh ¢( 8, v) cosh §(«, 3, 7)] .

By the Hyperbolic Sine Rule

sinh o(8,v) sinh é(y, 8, a) = sinh o (7, a) sinh §( 8, a, )

and hence
—ab ] .
S = ————sinho(a, §)sinh a(f, )
2sinh 5x
[cosh %X cosh é(a, ,v) + sinh %X sinh 6(v, 3, a)]
= —i@ sinh o(a, §) sinh o( 3, v) cosh [%x + 6(7, B, a)] .
2sinh 5x
Hence
8%w(0, 0)
Js0t
= m sinh (8, @) sinh o(a,v) cosh [%cp —8(8, a, 7)]

Tomhiv %X sinh o(a, 8) sinh o(3,7) cosh [%X — 8(a, ﬂ,»),)] o1

4. Bending along simple closed geodesics

Let S be a closed surface of negative Euler characteristic. We choose a
Fuchsian structure on 5, p : n(S) — I' ¢ PSL(2,R). We shall consider S
with the hyperbolic structure defined by p, and we shall use p to identify
m(S) with I'. Let «, 8, v be distinct simple closed geodesics on S, and
A, Ag, A, the corresponding discrete geodesic laminations on H2.

Let po be a quasi-Fuchsian structure on S, that is po : ' — [y C
PSL(2,C) is an isomorphism which is induced by a mapping ¢ : H? —
H3, which is a homeomorphism onto its image, and po(f)lenzy = Eo fo
£ e(mz), [K2). Then H?/Ty is a hyperbolic manifold of infinite volume,
homeomorphic to S x(0,1). The set £(OH?) is a Jordan curve and ¢ induces
a natural mapping on the geodesics in H?: if A = (u,v) is a geodesic in H?,
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let £,()) denote the geodesic (€(u), £(v)) in H3. Define £,(Aq) in the obvious
way.

Consider the orientation on dH? given by (0,1, 00). If p,q € H?, then
(p, ¢)a denotes the open arc on dH? from p to q.

Without loss of generality we may assume that the geodesic (0,00) is
contained in £,(A,), that £(0) = 0, {(c0) = o0, and that ¢ € H? does not
belong to Aq N(Ag U A,).

Let f be the element of 'y corresponding to the geodesic «, with axis
as =(0,00) and let f° = po_l(f). Number the leaves of Ag intersecting the
geodesic segment [z, f(z)] C H? in order Bi,..., Bk, so that B is closest to
i. Let 8; = &(B))-

For y = 1,...,k define uj,v; so that 8; = (u;,v;) and u; € £(0,0)a,
v; € £(0,0)s. For a and U as in Section 3, define G;(t) = A(u;,v;,ta).
Define the deformation of f, F(t) = n(G1(t)...Gi(t))f and the functions

7(t) = tr(G1(t) ... Gr(t)Ay)
w(t) = 2arccosh%7-(t).
Let a#8 = {1,...,k} be the set of intersection points of the geodesics

a and § on S. Since ¢ belongs to the axis of f°, a#8 is in bijective corre-
spondence with {#;,7 = 1,...,k}. Define

;= 0o(ay,B;)-

THEOREM 4.1. With the above notation w is analytic at 0 and

Proor. We have

O S (60 s

At t=0,G;(0)=1T and

dT(O) Zt( ) Xk:wsinhgcp.
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Hence .
dw(0) Z a(vj + u;) Z
— -4 J acosho;. [ |
dt = vj— uj iCanp

Consider the leaves of A, which intersect [7, f°(z)] and number them in
order, Jo1,---,%oe,, starting from the leaf nearest 1. Let von = u(Fon)-
For n = 1,...,4, define pon,qon so that ¥on = (Pon,qon) and pon €
£(0,0)a, qon € £(0,0)5 -

Let g; be the element of I'y which corresponds to the geodesic 4 and
has oriented axis ;. Let g? = p5'(g;). Consider the leaves of A., which
intersect [i,g;’(i)] and number them in order, ¥;1,...,%;¢;, starting from
the leaf nearest 7. Let vjm = &(Fjm)- For j =1,...,kand m =1,...,¢;
define pjm,qjm so that vjm = (Pjm,qjm), Pim € (6 (u; ), (v;))s and
gim € E(671(v;), 67 (u;))o-

Let a,b € £ and U a neighbourhood of 0 in C? such that if (s,) €U
then sb and ta lie in £ U (—Z). Define H;n,(s) = A(Pjmsqjm,sd), § =
0,...,k; m =1,...,£;. Define U;(s) and Vj(s) to be the fixed points of
T(Hj1(8)... Hje;(s))g; on C, so that U;(0) = u;, V;(0) = v;. Let Kj(s,t) =
A(U;(s), Vj(s),ta). Define the deformation

L(s,t) = m(Iy(s,t) ... Ki(s,8)Ho1(s) ... Hogo(3)) f
and
7(8,t) = tr(Ky(s,t) . .. Kp(s,8)Ho1(s) - - . Hoeo(5)Af)

w(s,t) = 2arccosh $7(s,t).

Since 7 € ay, the set a#fy is in bijective correspondence with {v¢,,n =
1,...,4}. Define

Cn = U(O‘f”)’On)~

Now consider B#vy = {1,...,£}. For each j € {1,...,k}, there is
a number n; such that S#y is in bijective correspondence with the set
{vjm,nj <m < {£; —n;}. For m € B#~, define

Oim = (Bj Vi(n;+m)) -

The geodesics €, (vja) forn <nj and n > £; —n; do not intersect the axis
of g;’. They come in pairs in the sense that for n =1,...,n;, ;@ —n41) =
—9j(7in)- Therefore o(8;,vj; -n+1)) = —0(Bj,7jn) + 7.
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Finally, for j € a#8, n € a#~, define

Hin = 6(ﬂf’ af, 7011)

and for j € a#B3, m € B#~, define

Vim = 8(eaf, Bj,Yj(n, +m)) -
THEOREM 4.2.

9%w(0,0) ab
2L = — E g inh ¢, sinh o ; cosh(3¢ ~ p; )
9 l sin n J 2(,9 lu']"
0s0ot 2sinh 5o ieal neapy
b
+ —_aT E E sinh 6, sinho; cosh(%x — Vjm)
2sinh 5x |
JEa#f mepH#y

Proor. At (s,t) =(0,0), 0K;(0,0)/0s = 0 and hence

827(0,0) 8 (82K(0,0) &N dG,(0) dHon(0)
oot " [; s T d ds )|

A computation similar to the one in Section 3 gives

92K ;(0,0)
br ( dsdt )

= a—bsinhlcp < [ —2Pym@im — 4;v;) + B, cothl\(] 9
2P (v = ) (ggm — pm)
where )
. — Gmtpim (% = %) (gjm + pjm)
™ gim = pim (v =) (gm — Pim)
2(v; + u;)(Pjm@im + u;v;5)
(vj — u;)%(gjm — Pjm)
and
dG;(0) dHon (0)
tr [ ——2 "7 Y
' ( dt ds 7

- ab [((Uj + u;)(gon + pon) _ 2(%;9; + Pongon) ) cosh Lo
2 [\(v; — 4)(gon —pPon) (v —u;)(qon — Pon) :

2(ujv; — pongon) . . 4 ]
- sinh + . (10
(vj — u;)(gon — Pon) 2°) - (10
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From (2) we have

82w(0, 0) " K, fL &, (dG, dH,,
sinh 30 =555t ‘]_“ (asatAf>+Z (dt ds Af)

£

_ab COSh ZL,OZ Z (q0n +p0n)(’U] + u]) (11)

(gon — Pon)(v; — uj)

j=1 n=1

We substitute (9) and (10) in (11) and obtain

9%w(0,0)
0s0t
E £
_ab Z o [ 2(pongon — %;v;)  2(Pongon + u;v;) coth %‘P]
2 joariint (U]' - u]')((IOn - pOn) (Uf - uj)((IOn o pOn)
ko4
ab 2pimQim — ujv;) 1]
_ = — B, coth>x] .
2 2:: = L(v; — u;)(gjm — Pjm) ! :

A calculation similar to the one in Section 3 gives

9%w(0,0 k
gé@t ) - > Zsmh‘f(ﬂpaf)smha(af Yon)

r)smh 2% 521 a1

cosh (599 - 5(ﬂj, Otfa ’)’On))

Z Z sinho(ay, 8;) sinh o(B;, 7jm)

j=1m=1

T oemh iy ’)smh 7X
cosh (EX _5(afv/8j337jm)) :

For 1 < m < ny, let v';,, = 7j(¢;—m+1)- Then 7']~m = —g(Yjm) and
hence U(,Hj,’)’ljm) =17 — o(f;,v;m) and

6(afaﬂjv7;m) = 6(afvﬂjv7jm) o

The terms corresponding to m and £; —m + 1 for 1 < m < nj, cancel out
and we are left with the terms for n; < m <£; — n;, which are in bijective
correspondence with S#+. |
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5. The derivatives of complex length functions

Let o be a simple closed geodesic on S corresponding to an element
f° € . We define the complex length of o in the quasi-Fuchsian structure
Po,

Aa(Po) = wpq(50):

In this way every simple closed geodesic « on S defines a mapping

A 1 Q(S) = =

If 1 1s a measured lamination on S, there is a neighbourhood W of 0 € C,
on which we can define a quasiconformal deformation of py, called bending
along p, [K2].

B,(-p0) : W = Q(S): t = By(t, o).

We define the first variation of the length of a under bending along p by

d
Tﬂ)\a = a [/\a(B#(ta pO))]t=0 .

If v is a measured lamination on S, we define the second variation of the
length of o under bending along g and v by

92
T, T A = D50t [Aa(Bu(t, Bu(s, PO)))](o,o) :

THEOREM 5.1. Let o and 8 be simple closed geodesics on S. Then

Tghe = Z cosho;.
JEa#p

PROOF. Bgisgivenonaset {f;,7 =1,...,k} of generators of I', by analytic
mappings Fjz : W — PSL(2,C). The mapping F} s is the one parameter
deformation defined in Section 4 if « is the geodesic corresponding to f;
and a = 1. Then

_ dw(0) _
Tglo p Z cosho;. [ |
j€a#p

THEOREM 5.2. Let «, 3,~ be simple closed geodesics on S. Then

TpT Ao = 5 smh — . Z Z sinh o; sinh ¢, cosh ( ,u]-n)
¥ jea#tf n€ofty

sinh o ;sinh §;,, cosh (A3 — vjm) .
f)smhuﬂ]%ﬂmezm sinl B coh (34 = vim)
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PrROOF. The two parameter deformation defined in Section 4 gives the
bending deformation Bg(t, B,(s, po)). It follows that

8?w(0,0)
TgT Ay = ——=—2—.
pinrte 950t
The variations of the complex length of a geodesic satisfy the following
relations, which generalise Wolpert’s reciprocity relations, [W2].

THEOREM 5.3. Let a, 8,~ be simple closed geodesics on S. Then
(i) Ta)\ﬁ + Tﬁ)\a =0
(i) TgT ha + TTodp + TaTpA, = 0.

PRrRoOF. (i) Choose an orientation for a. For each j € a#f, denote by @;
the geodesic a with the chosen orientation and by 3; the geodesic § with
the orientation induced by the definition of bending « along f, that is so
that it crosses o« from right to left.

Now consider bending 8 along a. If 8 has the orientation §;, then the
induced orientation on « is —&;. Then

Todg = Z cosh a(ﬂ_]-,—&j) = —Tshq.
JEa#p

(ii) For each (j,n) € (a#p) x (a#v) denote by &;n, Bjn,¥;n the orienta-
tions on «, 8, involved in the calculation of T3T, Ay, that is ﬂ_]-n and ¥;n
cross &j, from right to left at j and n respectively. The corresponding
triplets in the calculation of T, T, and T,Tz\, are Bjnﬁ]-",—&]-n and
Finy —0jn, —B]-n respectively. We use the properties of €44, under change
of sign (Lemma 2.2) and the result of Theorem 5.2 to complete the proof.

|
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Farey series and sums of continued fractions

Joseph Lehner

To Murray Macbeath, friend and colleague, on his retirement

In 1947 Marshall Hall [H] proved that every real number has a fractional
part that is representable as the sum of two regular continued fractions
CF(0,a1,as,...) whose partial quotients a; do not exceed 4. In a sort of
complementary result published in 1971, T. Cusick [C], using Hall’s method,
considered continued fractions with partial quotients a; not less than 2. He
showed that every real number has a fractional part representable as the sum
of two such continued fractions. These results were obtained by constructing
a type of Cantor set of a certain interval and then proving that the sum of
two such sets exhausts the real numbers modulo 1.

In the present note we observe that such a Cantor set may be obtained
by partitioning the interval by a type of Farey series. This leads to a new
proof of Cusick’s result.

1. The basic theorem of [H] may be stated as follows.

THEOREM H. Suppose from a closed interval A a middle open interval M),
is removed, leaving an interval M; on the left and an interval M, on the
right. Let the process be continued indefinitely, removing a middle interval
from each left-hand and from each right-hand interval. In a typical step of
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the process let the following condition hold:
myz < my , mig < my (1)

where my is the length of M, etc. Denote the Cantor set that remains after
all middle intervals have been removed by C(A). Then

C(A)+CA)=A+A. (2)
Here the sum of two sets A and B is defined by

A+ B={a+b: a€ A,be B}.

2. We now make use of a type of Farey series to construct a set
C(A). Two reduced rational fractions h/k, h'/¢', are said to be neighbors if
hE' — kh' = +1. The mediant of two neighbors is defined to be

h A h+h

“(E’k'> K+ 3
it is a reduced rational fraction lying between them and is a neighbor of
both of them.

We shall use mediants to effect the desired subdivision of A. Consider
the following lines. (Note 0=0/1 .)

1
Fl 075
1 21
F, 0, =, =, =
2 3’5 2
1212 5 31
F3 0,17?75, 5157?75
R0 L2123 3121125314l
4 5794 7171073517297 12 77 167 9’ 2

Removing the middle interval (1/3 = (0, 1/2), 2/5 = p(1/3, 1/2)) from
F, leaves a left-hand interval (0, 1/3) and a right-hand interval
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(2/5, 1/2). From the left-hand interval (0, 1/3) we remove a middle in-
terval (1/4 = p(0, 1/3), 2/7 = p(1/4, 1/3)) - that is, we take mediants
from left to right. This leaves in F3 a left-hand interval (0, 1/4) and a
right-hand interval (2/7, 1/3). From the right-hand interval (2/5, 1/2) we
remove a middle interval (3/7 = (2/5, 1/2), 5/12 = u(3/7, 2/5)) - that is,
we take mediants from right to left. This leaves in F3 a left-hand interval
(2/5, 5/12) and a right-hand interval (3/7, 1/2).

In general each left-hand interval, say (h1/k,, h2/k,), is partitioned by
the points

hy E _ hy ha\ ha _ (hy he\ hy @
ky’ k3 ky ko ky k3" ko ky
into a left-hand, middle, and right-hand interval, and the middle interval
(h3/ks, ha/ky) is removed. Of course hy = hy+ha, hy = ha+hs = hy +2h,,

etc. Each right-hand interval, say (hs/ks, h6/kg), is similarly partitioned
by the points

hs o hy_ (b hsN okt (ke he) ks
ks’ ke k' ks k7 ks ks B O

Condition (1) is easily seen to be fulfilled. For a left hand interval we
have, since adjacent fractions are neighbors:

m:hl+h2—ﬁ=; (6)
YTkt ke ki Rkt k)]
by _hsthy 11
2Tk kst ke ko(ks + k2)  ko(ky + 2k2)’
h3+h2 h3 1 1
my2 = -

ks+ky ks ka(ks+kz) (ki + k2)(k1 + 2k2)

For a right-hand interval,

m1=h7+h5_ﬁ=h6+2h5_ﬁz 1 (7)
k7 + ks ks ke + 2ks kg ks(ke + 2ks)’
g = E B he + hs _ 1
ke ke + ks ke(ke + ks) ’
he + hs  he + 2hs 1
Mmy2 = =

ke + ks ke +2ks (ke + ks)(ko + 2ks)
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The points of division form a Cantor set C(0, 1/2). Since condition (1)
is satisfied, we have from Theorem H:

THEOREM 1. C(0, 1/2) + C(0, 1/2) = [0,1].

3. Finally we wish to show that the division points obtained in [C]
and those developed above by Farey series are the same.
Let )
CF(0,ay,...,ap,...) = ———
( y @1 ) ) ) a + ar}-m

be the regular continued fraction with partial quotients a;. We assume
n even and a; > 2. Cusick starts with the interval A = [0, 1/2] and in
subdividing A introduces two types of intervals. Intervals of the first type
— these correspond to our left-hand intervals — have the form

[CF(O, al,...,an), CF(O, (11,---,(1n+1)] (8)

Intervals of the second type - these correspond to our right-hand intervals
- have the form

[CF(0, a1,..., asn), CF(0, aj,..., an—1)]. (9)

From each interval (8) we remove the interval
(CF(O, Alyeeey Qn, Q41 + 1), CF(O, Alyeeey Ay, 2)) (10)
and from each interval (9) we remove the interval

(CF(0, ay,..., an, 2), CF(0, a,..., Gn_1, an + 1)). (11)

In both cases the removal of the middle interval leaves behind an interval
of the first type on the left side and an interval of the second type on the
right side. The indefinite continuation of this process leads to a Cantor set.

Let a; = 2. The first steps of Cusick’s scheme are

B, A= |[CF(0)=0, CF(0,2) =3

2
B,  CF(0)=0, CF(0,3) = % CF(0,2,2) = 7, CF(0,2) =

[
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1 2 1
By CF(0)=0, CF(0,4)= 7, CF(0,3,2) = =, CF(0,3) = 3,
2 5 3 1
CF(0,2,2) = 5> CF(0,2,2, 2)= 33> CF(0,2,3) =, CF(0,2) = 3.

These agree with Fy, F;, F3 - see the lines following (3). Notice that in
each line intervals of the first type alternate with those of the second type.

Now suppose C; and F; agree for 1 < n. Denote the j** convergent of
CF(0, a1, az,...) by Pj/q;. We subdivide a typical interval of the first
type in C, to get

CF(0, ay,..., a;) = % (12)
J

. 1 . -
CF(O,al,...,aj+1+1):(a’+1+ )p]+p] 1,
(441 +1)g; + g1

Iy .
2Pj+1 T Pj
CF(a,,..., a; 2) = -4
( 1 s Y341, ) 2(]j+1+(]j,
_ Pj+a
CF(O,...,aj+1)— .
dj+1

Using the recurrence relations

Pj+1 = Gj+1P; + Pj-1, 4541 = @j+14; T ¢j—1

we find
(@j41+Dp;+pj1 _ Pit1 +P;
(@41 +1)g+gi-1 G414

By the inductive assumption the extreme terms of (12) agree with those of
(4), i e

Pi_l pin_ e

g ki’ gj+1 k2

Hence the middle terms also agree, namely,
Zﬁii&=#(& &ﬂ>=#(ﬁ.h>=ﬁz
gj+1 + g5 4 4i+1 ky’ k2 ks’

2pj+1 +p; — 4 (Pj+l TP Pi+1> - (h2 + M @) _l
2¢j+1 + g5 gGir1+ 4 G+ ke + k1’ ko kq
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Similar calculations apply to intervals of the second type (our right-hand
intervals). This completes the induction and the proof of

THEOREM 2. The Cantor sets C(0, 1/2) as given in [C] and in Section 2
above are identical.
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Commensurability classes of

two-generator Fuchsian groups

C. Maclachlan and G. Rosenberger

To Murray Macbeath on the occasion of his retirement

0. Introduction

A Fuchsian group is a discrete subgroup of PSL2(R) and two such
groups I'1,['; are commensurable if and only if the intersection I'y N Ty is
of finite index in both I'; and [';. In this paper we determine when two
two-generator Fuchsian groups of finite covolume are commensurable and
in addition, the relationship between two such groups, by obtaining part of
the lattice of the commensurability class which contains one representative
from each conjugacy class, in PG Ly(R), of two-generator groups. By the re-
sult of Margulis (see e.g. [Z]) that a non-arithmetic commensurability class
contains a unique maximal member, the non-arithmetic cases reduce to a
compilation of earlier results on determining which two-generator Fuchsian
groups occur as subgroups of finite index in other two-generator Fuchsian
groups [Sc], [S2], [R]. For the arithmetic cases, all two-generator arithmetic
Fuchsian groups have been determined [T2], [T4], [MR] and one can imme-
diately read off when two such groups are commensurable from the structure
of the corresponding quaternion algebra (see e.g. [T3]). The relationship
between such groups is more difficult to determine and we utilise structure
theorems for arithmetic Fuchsian groups [B], [V]. The relationship between
arithmetic triangle groups was determined in [T3].
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1. Two-generator Fuchsian groups

A non-elementary Fuchsian group of finite covolume has a presentation
of the form

Generators : a1, by, rag, by, 1, T2, Ty D1y P2, Ps

(1)

r s g
Relations: "' =1(1 =1,2,---,7r) Hw,- Hp]- H[ak,bk] =1
i=1  j=1 k=1
This  presentation determines the signature of the group
(g;m1,ma,---my;s). The group will be cocompact if and only if s = 0.
If T is a two-generator Fuchsian group, then I' has signature of one of the
following forms

(1) (0;my,mo,+--my;s) wherer + s =3
(i) (1;¢;0), (1;—;1)
(iil) (0;2,2,2,e;0) where e is an odd integer.

Now if I’y is a subgroup of I'; of finite index, the inclusion map defines an
embedding T(T'2) — T(T';), where T(I") denotes the Teichmuller space of
I'. Furthermore, this embedding will be surjective whenever the dimensions
of the two Teichmuller spaces are equal. All situations when this arises
are given in [S2] and in these cases, every Fuchsian group with the same
signature as I'; occurs as a subgroup of a group with the same signature as
[y. In particular, whenever I'; has signature (1;¢;0) (resp. (1;—;1)) then
Ty is a subgroup of index 2 in a group with signature (0; 2,2,2,2¢; 0) (resp.
(032,2,2;1)).

We denote the signature (0;2,2,2,e;0) (resp. (0;2,2,2;1)) where e is
even or odd by o, (resp. 0,). Thus if a commensurability class contains a
two-generator group, then it contains a triangle group or a group of signa-
ture o, where (3 < e < ).

Using the theorem below, the problem divides into two cases depending
on whether the Fuchsian group is arithmetic or not. The definition and
relevant results on arithmetic groups will be given in section 3. For the
moment it suffices to note that arithmeticity is a commensurability and
conjugacy invariant notion.

Comm(T) = {t € PGLy(R) | T,t['t"! are commensurable}
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THEOREM (Margulis) Let I' be a finite covolume Fuchsian group. Then I’
is a subgroup of finite index in Comm(T") if and only if T Is non-arithmetic.

2. The non-arithmetic cases

Let A be a non-arithmetic commensurability class of Fuchsian groups
which contains a two-generator Fuchsian group I' of finite covolume. By
the Margulis Theorem A has a unique maximal member Comm™*(T') = T'.
Recall that if T'y,T'; are two Fuchsian groups with Ty C T , [ : [2) < o0
and 'y is a triangle group, then I’y is also a triangle group. Thus if A
contains a triangle group then I'y is a triangle group. If I'g is not a triangle
group then 'y D I where I has signature o, (3 < e < o0) and is of finite
index in I'g. Thus ' must have an element of order e (resp. be non-
cocompact if e = 00). But then a simple volume calculation shows that T'g
must have signature o, and so I' = I'y. Again a simple volume calculation
shows that in this case Iy cannot contain a subgroup of signature ¢, with

e #e.

ProposIiTioN 2.1 Let I'y be the unique maximal group in a commensura-
bility class which contains a two-generator non-arithmetic Fuchsian group.
Then either T'y is a triangle group or 'y has signature ¢, and the commen-
surability class contains exactly one two-generator group

In the cases where I'g is a triangle group, we must determine those trian-
gle groups which contain some other two-generator Fuchsian groups as sub-
groups of finite index. This problem has been resolved by Schulenberg[Sc],
Singerman[S2] and Rosenberger[R]. By compiling their results we obtain a
finite number of families of triangle groups and the lattice of their subgroups
which contain two-generator groups. One family is doubly-infinite and the
other families depend on a single parameter t. For each of these families we
obtain a finite group G, independent of ¢, such that for all ¢,

L

“=%

IR

where I is the maximal triangle group and N is the maximal normal sub-
group which is contained in all two-generator subgroups of I', and so each
two-generator subgroup of I' corresponds to a subgroup of G.

For each family, we give the signature of the maximal triangle group T,
the signature of the maximal normal subgroup N and the finite group G.
The excluded values of the parameter correspond to those families which
are arithmetic, this being immediately deducible from the results in [T3].
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Note, however, that when the value of the parameter does correspond to

an arithmetic group, the lattice given below will be a sublattice of the full
lattice of two-generator groups in these cases.
give three lattice diagrams as the others can be regarded as subdiagrams
of these, suitably interpreted. On the full diagrams, the normal subgroups
corresponding to the subdiagrams are labelled and the subdiagram consists

of all the groups between that and the maximal triangle group.

Notation

Finally we actually only

(i) All groups here are cocompact and so signatures are reduced to the form

(gymq,ma,---

vmr)

Additionally, if a period n is repeated r times, this is indicated n(".

(i1) Only one representative in the conjugacy class in PG L2(R) of each of

the groups involved is indicated on the lattice diagram.

Maximal triangle Maximal normal  factor
group subgroup group
A F=(0;21t1a2t2)1 31 743a4 N=(0;t11t11t2) Z,

B I'=(0;2,3,2t), (t,6)=1 N, =(0;t,t,1) Ss
['=(0;2,3,3t), (t,2) =1 Ny =(0;¢,¢,¢,t) A,
['=(0;2,3,4t), (t,3)=1 N3 = (0;¢9) S4
['=(0;2,3,6t), (¢,2) =1 N4 =(1;¢t19) Gy
I =(0;2,3,12t) N5 = (13;12%) Gs

C T'=(0;2,4,2t), (t,2)=1 N, =(0;t,¢,t,t) Dy
[ = (0;2,4,4t) Na = (15¢,,1,1) H,

Table 1

excluded
values

(5,n)

n = 3,4,
5,10,15
5,7

3

2,4

3,5

1,2

y <

3,5,9
2,3

In this table the finite groups are Z, the cyclic group of order 2, S3, Sy, the
symmetric groups on 3 and 4 letters, A4 the alternating group on 4 letters,
D, the dihedral group of 8 elements and the remaining groups are described

below.

Gy={z,y|a? =y’ =(ay)’ =

[2,9)° =

[z, 4)*[e,y™")* = 1}
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Gs ={z,y|2* =¢* = (e9)'® = (v~ )’ (29)*)* = (xy™)"* =1
(vz)2(zy)® = (2)°(y2)*, (29)*(y2)® = (y2)°(2y)?,
(v~'2)® = (yz)'e(yz) 2y}

Hy=A{z,y |2’ =y* = (zy)* = 1, oy’ =y’z}

Case A
(0 ~1t11~t2)
2
(03t1,t1,12)
Figure 1
Case B
(0;2,3,121)
2
3 (0;3,3,61) 4
(0;2,61,121) Oy

(0:3,41,121)
3 3 2 4
| 3

(0;32,12¢ 171) (0;61,61,61) = N, (1;20)
1 ]

3 3 4 T
(0,3t.3t,6t,6t) (0;41,41,41.4f) = N,

2 ' 2
(1:20.20.20)

|
(0:3¢9) = N, (1;26,21,21,21)
3 4 4 3
(4197 (1:20.U2) = N,
[« 4

|
(13;/29) = N,

Figure 2

175
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Case C (0;2,4.41)
2 2 2
(0:2,41,41) (0:4.4,21) Oy

(%3
[\
b
\N—‘
[\S]

(0:21,4t,40) (0:2,2,21,2t) (1.0

(P I 4

0:21,2¢.20,2t) = N,
2

(Lt = N,
Figure 3

3. The arithmetic cases

In this section we determine the commensurability classes of the arith-
metic two-generator Fuchsian groups. Recall, that arithmetic Fuchsian
groups are defined as follows (e.g. [V], [B]).

Let k be a totally real number field and A a quaternion algebra defined
over k which is ramified at all real places except one. Let p be a repre-
sentation p : A — M3(R) and O an order in A. Then if O! denotes the
elements of norm 1 in O, the group Pp(O') is a Fuchsian group of finite
covolume and the class of arithmetic Fuchsian groups is the class of all Fuch-
slan groups commensurable with some such P(p(O')). If ' is an arithmetic
Fuchsian group, let T'?) be the subgroup generated by 72,v € I". Then the
isomorphism classes of the quaternion algebra can be recovered from I' as

AT®) = {> aivi | s € Q(try,y € TP)}
and is uniquely determined by the arithmetic group [T1], [T3].

THEOREM (Takeuchi) Let I';, "y be two arithmetic Fuchsian groups. Then
I', is commensurable with a conjugate of 'y if and only If the associated
quaternion algebras are isomorphic.

Now two quaternion algebras over the same field are isomorphic if and
only if they have the same set of ramified places. All two-generator arith-
metic Fuchsian groups together with the defining field and ramification set
of the corresponding quaternion algebra have been given by Takeuchi [T2]
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[T4] and Maclachlan - Rosenberger [MR]. Thus one can read off from these
lists exactly when two arithmetic two-generator groups are commensurable.
However, we also determine that part of the commensurability lattice which
contains one representative from each PGLy(R) conjugacy class of two-
generator groups.

A. Non-compact case. From the lists mentioned above, this commen-
surability class contains groups of the following signatures : (0;2,3;1),
(052,4;1), (053,351), (052,6;1), (0;4,4;1), (0;2;2), (0;6,6;1), (0;—;3) and
four classes of groups of signature (1; —;1). Recall that each group of signa-
ture (1; —; 1) is contained as a subgroup of index 2 in a group of signature
(0;2,2,2;1). The relationship between the triangle groups has been given
in [T3] and by the analogues of Figures 2 and 3 above we see that (0;2,3;1)
contains a subgroup of signature (0;2,2,2;1) as does (0;2,4;1). Since the
second of these is normal in (0;2,4; 1) which is maximal in PS Ly (R), these
two groups of signature (0;2,2,2;1) cannot be conjugate.

Now groups commensurable with the classical modular group have been
studied in [H], [M] in terms of the groups 'y(n) and their normalizers ' n(n).
From [M] the groups I'n(5), I'n(6) have signatures (052, 2,2;1) and cannot
be conjugate to each other or to the groups of the same signature already
described. Now I'n(5)NTo(1) = I'g(5) which has signature (0;2, 2; 2) while
['o(6) has signature (0; —;4). We thus obtain the following commensurabil-
ity diagram.

0;2,3:1)
12 4 2 |3
6 0;2,4:1) ;
0;2,6:1) 0;3,3:1)
[o 212 O, |
0:2:2) o, (0:44:1) C..
2| {2
3 2 2
4 2[0:3:2) (0:6.6:1
2

(=0 0:2.22) (=) (0=3)  (Li=1) (11

(04
Figure 4
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B. Cocompact classes involving triangle groups. The arguments in
these cases all follow the same lines, so we give details in only one case
- corresponding to the triangle group (0;2,3,8) — and only appropriate
comments in the other cases. Similar arguments were employed in [MR].

From the lists in [T2], [T4], [MR] the quaternion algebra is defined over
Q(4/2) and its finite ramification is at P;. Furthermore, groups of the fol-
lowing signatures are in the commensurability class : (0;2,3,8), (0;3,3,4),
(032,4,8), (052,6,8), (0;2,8,8), (0;4,4,4), (0;3,8,8), (04,6,6), (034,8,8),
three classes of signature (0;2, 2,2, 3), one class of signature (1;2) and three
of signature (1;4).

The relationship between the triangle groups is known [T3] (Note, how-
ever that in the appropriate diagram (0;4, 8,8) should be shown as a sub-
group of (0;2,8,8)) and from the (0; 2,4, 4t) lattice in figure 3, the group of
signature (1;2) is a subgroup of index 4 in (0; 2, 4, 8).

Now let us consider the three classes of groups of signature (05 2,2,2, 3).
If such a group is to occur as a subgroup of 'y which has signature (0; 2, 3, 8)
then it will correspond to the stabiliser of 1 in a suitable permutation rep-
resentation ¢ : 'y — Sy since the index would have to 4.(see e.g.[S1]) The
obvious homomorphism onto Sy does in fact yield such a subgroup and one
can casily show that there is only one class of such homomorphisms and so
one conjugacy class of subgroups of Ty of signature (052, 2,2, 3) (c.f. [MR])

Let T have signature (0;2,2,2,3) and be such that it is not conjugate
in PGL2(R) to a subgroup of ['y. Since I' cannot be a subgroup of another
triangle group commensurable with 'y by a simple volume calculation, it
follows that I' is maximal in PSL;(R). We now make extensive use of
results of Borel [B], which necessitate working in PG Lo(R). In the tree
of maximal orders at each prime v unramified in the quaternion algebra
A, choose a vertex P,. Choose also an adjoining vertex P, and edge e,.
Let S and S’ be two finite disjoint subsets of the set of primes which are
unramified in A. Define

Fss ={a€ A* | afixes P,,v ¢ SUS' a fixese,,v € S,a fixes P,,v € S’}

In these cases where the maximal group is a triangle group, the group of
smallest covolume in the commensurability class can be taken to be 'y 4
and [y 4 : F:;,aﬁ] = 2 where F;,aﬁ =Ty 4N PSLyR). Now I' C T'ppaz of
index I =1 or 2 where I'y,,, is a maximal group in the commensurability
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class in PGLa(R) of 'y 4. Now I'nq, will be conjugate to some group I's
with generalized index given by

[Cs:Tssl=2"" [[(Nv+1)
ves

where 0 < m <| S |and if | § |= 1 then m = 1. In our case by a volume
calculation g

[Cs,6:Tssr] =7
By examining the primes of small norm in Q(,/2), we find that we must
have § = {P7} or {P;} the two primes of norm 7, and | = 2. We can
assume that I'm.z = I'sg. Since the tree of maximal orders in the case
of P; or P} has Valency 8, it follows that [['y ¢ : 'y g NI's 4] = 8 and so
Fs¢:TgsNTgy) =2 Sincel =2, [Igy: F"S'¢] = 2 and so [I‘"S'¢ :TyeN
F"S' #) = 2. Since every subgroup of index 2 in I has signature (0;2,2, 3, 3),
it follows that Ty enlE ¢ has signature (0;2,2, 3,3). Furthermore, for §, =
{P:}, I's, 4 will contain an element odd at P; (for the definition of ’odd’
and its role with respect to the groups I's s see [B]. See also [MR section
6]). It follows that I's, 4 cannot be conjugate to I's, 4 where S; = {P;}.

Now consider, in this case, the groups of signature (1;4), each of which
is contained in a group of signature (0;2,2,2,8). As above, we find that
there is just one class of such groups which are subgroups of (0;2,3,8) of
index 9. In the other two cases, we argue as above and find that the groups
I's¢, where S = {P17} or {P};} are such that [['g 4 : '% 54 =2and %, has
signature (0;2,2,2,8). Also [F I‘¢y¢ﬂI‘ s =2 Thus Ty NI " has one
of the three signatures (1; 4), (0 2,2,8,8)or (0 2,2,2,2,4). Note that s eN
ri ¢ is normal in ri .¢» Which is maximal in PSL(2, R). Thus as a subgroup
of F¢ & the group 'y 4 N F 4 must be self-normalizing. By employing
CAYLEY?t we obtained that the group of signature (0;2,3,8) contained
2 conjugacy classes of self-normalizing subgroups of signature (0;2,2,8,8)
and none of signature (1;4). But each group of signature (0;2,2,8,8) is a
subgroup of index 2 in a group of signature (0;2,2,2,8). It thus follows
that these groups of signature (0;2,2,2,8) must be the groups I‘;‘t where
S = {P17} or {P};} and as above cannot be conjugate in PSL(2,R).

C. Cocompact arithmetic classes. The lattice diagrams for all cocom-
pact arithemtic classes are given on the pages which follow.

T The authors are grateful to Alan Reid for help with the implementation of this.
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X

(0:2.4,18)

Gy (0:2,18,18) (0:4.4.9)

(0:9.18.18)
Figure 15

Remarks on these diagrams

. It will be noted from the arguments involved in obtaining the commen-

surability lattice for the group (0;2,3,8), that if a group I of signature
(0;2,2,2,e) where e is odd, is known to be commensurable with a max-
imal triangle group ( of smaller covolume) and the intersection with the
maximal group has index 2 in T", then one immediately deduces that
the intersection has signature (0;2,2, e, e). However, if e is even and the
same conditions hold, there are three possible signatures which the inter-
section may have. It is then necessary to investigate the self-normalizing
subgroups of the appropriate index as was done in the (0;2,3,8) case.
Note that this tactic employing CAYLEY was also used in the cases
(0;2,3,10), (0;2,4,5), (0;2,4,6).

In many cases the results of Schulenberg [Sc|] and Rosenberger [R] were
employed to determine when groups of signature (1;¢q) or (0;2,2,2,¢)
with e odd were subgroups of triangle groups.

. Our detailed investigations revealed some small errors in [T4]. We note

only one of significance — the group of signature (1;5) with defining field
Q(1/5) and ramification set {P,} should have ramification set {Ps}.

. The diagrams above are ordered such that the covolumes of the maxi-

mal groups increase but we have omitted 6 maximal arithmetic triangle
groups which we now comment upon. The two-generator commensu-
rability diagram corresponding to the groups of signatures (0; 2,3, 16),
(0; 2,5,20), (0;2,5,30) and (0;2,5,8) involve only triangle groups and
are already given in [T3]). In the cases corresponding to the groups
(0;2,3,24) and (0; 2,3, 30) the diagram is exactly as was obtained in the
non-arithmetic cases (0;2,3,12t) and (0;2, 3,6t) in section 1.
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D. Commensurability classes not involving triangle groups. Most
classes of such groups just contain one conjugacy class of two-generator
groups. There are eleven classes which contain more than one conjugacy
class of two- generator groups and seven of these contain pairs of groups of
different signatures.

Of these seven, we treat one example briefly, the others following a
similar pattern. Let A be defined over Q(/13) and ramified at P3 (or P3).
This gives rise to one class of groups of each of the signatures (0;2,2,2,3)
and (1;3). Again Borel’s results [B] are employed to give

Lo . B I o Bis

in his notation. A fundamental unit is &2& and a P3 unit is &2& SO
that the first group above has order 4 while the second has order 2. Now
using the notation adopted in C. above, this yields that

4 —-m
[Cs6:Tsg)=7=2""[[(Nv+1)
vES

where I'sy contains the maximal (in PSL(2,R)) group of signature
(0;2,2,2,6). The only posssible solution is S = {P;} (resp. P3) and | = 2.
As before we obtain that 'y 4 N Fg'-,qs has index 2 in I‘;‘t and index 4 in
I‘;';, 4 One calculates directly that the intersection cannot have signature
(0;2,2,6,6) (clearly) or (1;3). Thus we obtain the commensurability dia-
gram

a3

[of3

2 2
1;3 0;2,2,2,2,3
(

Figure 16

The same diagram arises for A defined over Q and ramified at (2), (5).
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If A is defined over Q(1/17) and ramified at P, or P, we obtain

a3

(e} 3

2 2
(1;2) (0;2,2,2,2,2)

Figure 17

If A is defined over Q(+/2) and ramified at P; or P; this gives

04
T8 3 2
(1;2)
2 2
(1;4) (052,2,2,2,4)
Figure 18

The remaining four cases arise from quaternion algebras whose type
number is 2 and in all cases this gives rise to commensurable pairs of groups
of signature (0;2,2,2,3). They arise in the following cases ( for more details

see [MR)).

field discriminant finite ramification real ramification
36497 ¢ T2, T3,T4,T5

38569 ¢ T1,T2,T3,T4

229 ¢ T2, T3

257 ¢ z1,T2

(The roots of the polynomial generating an integer basis as given in [PZW]
are ordered such that z; < 2z < -+ < )

In these cases there is no group which is the obvious intersection of
the two maximal groups since we could conjugate one maximal order while
leaving the other fixed.



[B]
(H)
[M]
[MR]
[PZW]
[R]
[Sc]
[S1]
[S2]
[T1)
[T2]
[T3)

[T4)
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Limit points via Schottky pairings

P. J. Nicholls and P. L. Waterman

Dedicated to A.M. Macbeath

1. Introduction

Let I be a discrete group of Mobius transformations preserving the upper
half of Euclidean n-space:

H'={z=(zy, 22, ..., p) : T, >0 }.

We denote by j the canonical point (0, 0, ..., 0, 1), and define the lmit
set of ' to be the set of accumulation points of {y(j) : v € '}. A well
known consequence of discreteness is that the limit set is a subset of the
hyperplane { z € R" : z,, = 0 }. In fact, the limit set is closed, I-invariant,
and, unless the group is elementary, is a perfect set.

Much work has been done on the classification of various types of limit
points, usually in connection with the rate of orbital approach to the point
in question; see [Nicholls [4], Chapter 2], for example. However, the con-
struction of concrete examples of limit points exhibiting certain important
characteristics is by no means easy. The purpose of this note is to describe
some fairly general constructive techniques that the authors have found
particularly useful.

We now define those particular classes of limit point that we propose to
consider. For this purpose, we assume that the point under consideration
is the point at infinity; conjugation by a Mébius transformation shows that
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this involves no loss of generality. Indeed, for the remainder of this paper
we will assume that our limit point is at infinity.

If infinity is a limit point for the group I', then clearly the orbit of j, and
indeed of any a in H"®, must be unbounded. However, we are interested in
the n-th coordinate so let y(a) = (11(a), ¥2(a), ..., vn(a)). We say that
infinity is a horospherical limit point for I if sup{ yn(a): vy € T } = oo for
some, and hence every, a in H® . Recall that a horosphere is a Euclidean
sphere in H™ that is tangent to the base plane { z € R" : z, = 0 } and so we
see that for infinity to be a horospherical limit point we are requiring that
the orbit of j enter every horosphere tangent to the base plane at infinity.
Such horospheres are just hyperplanes z, = constant.

If infinity is not a horospherical limit point, then sup{ vn(a) : v € T' }
is bounded. If this bound is attained for all a in H™ | we say that infinity
is a Dirichlet point for T'. If for some a in H™ the bound is not attained
we say that infinity is a Garnett limit point with respect to the orbit of a.
Such points are shown to exist in [3]. The reason for the term “Dirichlet
point” is that when infinity is of this type, then it must be represented on
the boundary of every classical Dirichlet region for I' . These conditions are
explained in much greater detail in [Nicholls [4], Chapter 2]. In particular,
it is shown that the classical Ford construction yields a fundamental region
for I if and only if infinity is a Dirichlet point. In fact, the Ford construction
amounts to the selection of the “highest” point from each orbit and this is
clearly only going to yield a fundamental region if each orbit possesses a
point of maximum height. Indeed, the Ford domain is void if infinity is a
horospherical limit point. When considering the nature of a limit point at
infinity a useful construction is to form a Schottky group by pairwise identi-
fying disjoint spheres, and to analyse the orbit of some canonical point. We
give simple criteria on a set of disjoint spheres which guarantee a Schottky
pairing generating a discrete group for which infinity is of the desired type.
This result is then used to show that in hyperbolic four-space a parabolic
fixed point can also be a Garnett limit point.

2. Construction criteria for limit points

Given (Euclidean) spheres § and ¥ a Schottky pairing is a Mobius trans-
formation T mapping the outside of § onto the inside of £ . An infinite
family of disjoint spheres may thus be paired, in many ways, by Mdbius
transformations generating a Schottky group. It follows from elementary
combination theorems that this group is discrete and that the exterior of
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the spheres (non-void when the spheres are regarded as hyperbolic planes)
is a packing (no pair of distinct points are group equivalent) [Maskit [2]].
Further, if the hyperbolic distance between any pair of spheres is uniformly
bounded below then, as in [Maskit [2], p172] the exterior is actually a fun-
damental region.

Crucial to our results are the following observations which generalise
familiar results concerning Mé&bius transformations of the plane. Their
proofs are minor modifications of the standard complex arguments.

LEMMA 1. If, utilising Ahlfors’ description of a Mdbius transformation via
Clifford algebras (1], [5],
a b
= (¢ 4)

then T has isometric sphere |cw +d| =1 and

. 1
)= G

where Im denotes the height above the boundary and j the canonical point.

LEMMA 2. If T is a Schottky pairing of spheres S, centre « and radius r,
and L, centre § and radius p, then its isometric sphere is |lw — a| = \/Tp.
Indeed, for some A with |A\| =1,

[27/\ _ ,6/\0‘* 3%
T=| V" [\/err pA]
A —Ja
TP TP

The isometric spheres of T and its inverse thus have as radii the geometric
mean of the radii of § and £. In particular, § and £ are the isometric
spheres of T and T7!if and only if r = p.

Our method consists of adeptly utilising the geometric averaging of radii,
possible by Lemma 2, to obtain information about the isometric spheres of
the generating transformations. We are thus able to prescribe the various
kinds of limiting behaviour at infinity.

THEOREM 1. Given disjoint spheres S,, centre «, and radius r, with
sup{rp,} = oco:

(I) There exists a Schottky pairing {T;} of the S, so that infinity Is a
horospherical limit point forI' = < T},T5,... >.
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(IT) There exists a Schottky pairing {T;} of spheres Sn, centre a, and radius
Pn < Ty, so that Infinity is a Dirichlet limit point forT' = < T1,T5,... >.

(III) There exists a Schottky pairing {T};} of spheres S..., centre a,,, and
radius p,_ < T,,., So that infinity is a Garnett limit point for
F=<T,Ty,... >.

PROOF.

(D) Let T}, be a Schottky pairing of S, and S, then by Lemma 2:

sup{ Im[mTn(j)] } = sup{ Tﬁ% } = o0

Hence a Schottky pairing exists for which infinity is a horospherical limit
point.

(IT) Any pairing of spheres for which the isometric spheres are uniformly
bounded apart in the hyperbolic metric will generate a discrete Mobius
group for which the Ford domain is a fundamental region obtained by a
Schottky pairing of isometric spheres [2]. Infinity is thus a Dirichlet point.
Hence, there exists a Schottky pairing {T;} of spheres 8, centre o, and
radius p, < r, for which infinity is a Dirichlet limit point.

(IIT) Re-normalising, we consider a subset of the S, whose centres a,, satisfy:

|aen| — oo monotonically in a cone C of opening less than 7 and with vertex
at the origin. See figure 1.

Figure 1. Schottky pairing of spheres.
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Now replace &7 and Sz with spheres 31 and 32, still centred at o, and
aq respectively, and each having radius py < /ri7r2. Further insist that
every point of §; has absolute value less than any point of 5.

Let K be a closed ball inside &) not containing a; . Choose, re-labeling

if necessary, a3 so large that it has absolute value larger than any point of
&2 and of TK, for any Schottky pairing T of §; and Ss.

Let T be a Schottky pairing of 31 and &, for which 7K has centre on
the line joining a2 and «3. Observe that §; and §; are the isometric spheres
of Ty, T] ! respectively.

Choose a4 so large that there exist spheres 83 and & of radius
p2 < /T3y, centred at a3 and o4 and with T3 K C 33; 31, S, , 33, S,
disjoint and having every point of 83 of absolute value less than any point
of S;. Repeat this process to obtain a Schottky group ' = < T3, T3, ... >
with Ford domain F : the exterior of the §;. Observe that F, though non-
void, is not a covering: no point of F is ['-equivalent to a point of X. It
follows that infinity is a Garnett limit point.

As an application of our technique we see that in H®, n > 4 , a parabolic
fixed point can, unlike the situation for n < 3, be either a horospherical limit
point [5] or a Garnett limit point.

THEOREM 2 There exists a discrete group of Mobius transformations of
hyperbolic four-space for which infinity is both a parabolic fixed point and
a Garnett limit point.

ProOOF. In [5] a region P is constructed with the following properties:
(I) P is a packing for < T >, where T is a specified screw translation.
(IT) There is a family of disjoint spheres, of unbounded radii, contained
in P and centred on a line orthogonal to the axis of T. Thus, if R is the
subset of P exterior to the spheres and I'; any Schottky group pairing the
spheres, then R is a packing for I' = < T,I"; > which is therefore discrete.
After shrinking and deleting some of the spheres, as required by Theorem
1, one may construct a new Schottky group I'}, pairing the new spheres
and giving a packing R*, say, for the discrete group I'* = < T, 't >. Note
that the Ford domain for I'} is, by the construction of Theorem 1, obtained
by a Schottky pairing of spheres centred on a line orthogonal to the axis
of T. Since infinity is a Garnett limit point for '} it is either a Garnett
limit point or a horospherical limit point for I'*. That infinity is indeed a
Garnett limit point follows by observing that if F is the Ford domain for
I} then FNP # 0.
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Diagonalizing Eisenstein Series 111

R. A. Rankin

To Murray Macbeath on the occasion of his retirement

13. Introduction and Recapitulation.

This paper is a continuation of [3] and [4]. The first of these two papers
was concerned with the structure of the space £(x) of Eisenstein series of
integral weight & > 2 belonging to the group I'¢(N) and having multiplier
system the character xy modulo N, where x(—1) = (—1)*. In that paper
the action of the Hecke operators T,, (n € N) on the members of the space
was studied in detail. In [4] an inner product on £(x) was defined, and it
was shown that, in the case when N is squarefree, a basis, whose members
were eigenforms for all the operators T,,, could be constructed.

The purpose of the present paper is to consider the problem for general
level N and character x. It will be shown that diagonalization is not possible
in every case, but can only occur for certain specified N and y, so that the
problem is completely solved.

The same notation as in the earlier papers will be used, and section and
formulae numbers will be continued. However, it will be convenient for the
reader if certain results and definitions are recapitulated.

E(x) 1s a vector space of mutually orthogonal subspaces £(x, 1), where
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t1 is a divisor of NV, and we put
(131) tltg = N, h = (tl,tQ).

The subspace £(x,t1) contains only the zero form, unless ¢, is unbranched
for x, and this occurs if and only if N(x), the conductor of x, divides N/h.
When t; is unbranched the space £(x,t1) is invariant under the operators
T, with (n, N) = 1, and has dimension ¢(h), where ¢ is Euler’s function.
It is spanned by the ¢(h) basic functions f.(z,t,), defined by

felz,t1) = Z e(w)G(W™h | x;2),
where € is any character modulo k. Here u runs through a set of ¢(h) differ-
ent integers prime to ¢, and such that no two different values are congruent
modulo k; see (5.14) of [3]. To define the Eisenstein series G(W"", x; z),

Weput
— uty _ 1 0
L =W = [ o1 ,

and note that, since ¢, is unbranched, the character y can be expressed
as Y = x1x2, Where y; and y, are characters modulo ¢; and modulo t,,
respectively. Then, we have

GW*",x;2) = x2(v) ) X(THLT:2)7F,
TeERL

where Ry is an arbitrary right transversal of the group (—I, L~'U"L) in
To(N), and where n = np, = t5/(¢1,12) is the width of the cusp L~'c0. Also
LT : z is, as usual, the denominator of the bilinear map LT(z).

The basic functions fc(z,¢;) are mutually orthogonal eigenforms for the
operators T, when (n, N) = 1. As we shall be dealing with a variety of
different characters e bearing different suffixes, it is convenient to modify
the notation, drop the independent variable = and write

(13.2) f(et1) in place of fe(z,21).
We then have

(13.3) flet)|Tn = AMnst1,6,x) f(e;t) for (n,N) =1,
where
(13.4) A(n;ty,e,x) = Z ak_lxl(a)xg(d)g(a)e(d).

n=ad
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As stated above, t; is the modulus of the character x; for 7 =1,2. When
we need to emphasize this we shall write, for any ¢,

(13.5) xi(g,t:;) inplaceof xi(¢) (=1, 2).

When h = 1, or when ¢ is the principal character modulo h, we may write
1 in place of e.

In Lemma 3.2 the characters x; and x2 were defined originally (as i oy
and ¢3) for moduli NoN; and Nz, respectively, where

(NoNy,Ny) =1, N/h= NoNyNy, NoNilty, Nylts.

These characters were then extended to the moduli ¢; and ¢;. We shall
write

(13.6) X1= X191, X2 = X292,

where ¢, and ¢, are principal characters to the moduli ¢, and ¢;, respectively
and x} and x3 are primitive characters. We have

(13.7) N(xDINoNi,  N(x3)IN;.
As in (3.10) we write, for any prime ¢ dividing N,
(13.8) X = €q€0,

where the modulus of ¢, is a power of ¢, and the modulus of ¢ is the greatest
factor of N prime to q.

14. The action of the operator T,

Throughout this section it is assumed that ¢ is a prime divisor of N,
and that ¢, is an unbranched divisor of N. We define «, 3, §, and v by

(14.1) ¢“llt1,  ¢Plltz,  @°lIN(eyp), v=a+p.

As in [3], we put

(14.2) Ga = { ! _ql_l EZ S 3

The following two lemmas are easily proved by considering the cases
fLa—2,=a—1and g > «a separately.
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LEMMA 14.1. Let « > 1. Then t,/q is branched if and only if

(14.3) B<a—2 and 6=a.

LEMMA 14.2. Let € be a character modulo h and assume that o > 1. Put

(14.4) h' = (t1/q, t29),
and define p by
(14.5) ¢"|IN(e).

Then € is not a character modulo h' if and only if

(14.6) B>a and p=a.

We note that when k' = gh (so that 8 < a — 2) € can be extended to a
character modulo A’ by multiplying it by the principal character modulo q.

We now assume that g|t; and that € is a character modulo A, as in
Lemma 14.2, and define a character n as follows:

€€, if 0<é6<LB=aq,
(14.7) n =1 €€ if 0<é6<pf=a—-1,
€ otherwise.

We note that in the first two cases t;/q is certainly unbranched, but that
in general » may not be a character modulo h'. We now define £,(n) to be
1 if and only if

(14.8) t; and t,/q are unbranched and 7 is a character modulo A'.

Otherwise we put £,(n) = 0. It is easily verified that this definition of £,(n)
is equivalent to the definition of £,(n) in equation (8.3) of [3].

As shown in [3], the subspaces £(x, ¢, ) are not in general invariant under
the operators T}, and we now state Theorem 8.1 in simpler form:

THEOREM 14.3. Let t; be unbranched and ¢ a character modulo h. Then,
for any prime ¢ dividing N we have

(14.9)  fl&t)ITy = " 'xa(@(@)f(e: 1) (a=0),
(14.10)  f(&t1)ITy = qatq(n)f(m5t1/q) O<a<vy),
(14.11)  f(&t)ITy = x2(Q)e(9) f(61) + @.&(m)f(msti/g) (o =v).
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Note that, in (14.11), n = ¢, and that {,(n) =0 when 6 = v > 2.

If we put

(14.12) E00t) = P EGua™t)  (ta*N),

then by the Theorem,
(14.13) Eg(x> DTy € Eq(x 1)

Note that the subspaces &(x,t) are mutually orthogonal for different values
of t.

We now consider the possible eigenvalues that an eigenform for T, may
possess.

THEOREM 14.4. Let t divide Nq™¥ and let g be an eigenform on &;(x,t) for
the operator T,, and let its associated eigenvalue be . Then
(i) M = ¢* Y if g € E(x»t), (i) |\| =1 if g is not orthogonal to E(x,tq"),
and otherwise (111) A = 0.

PROOF. We suppose that g is not the zero form.
(¢) If g € E(x, 1), then

g=>Y o(e)f(s1),

€

the sum being taken over all appropriate characters e. Accordingly,

Mg =g|T; =Y a(e)d* xa(a, t)e(a) f( &),

€

so that
Aa(e) = ¢“ 7 xa(g, t)E(g)a(e).
This proves (%).

(¢¢) We can write, similarly,
g=> be)f(eq"t) +G
where G is orthogonal to £(x,tq"). Then, if ¢“tt' = N,

Mg =gIT, =Y b(e){x2(a,t)e(q)f (& ¢"t) + qule(n)f(m; ¢ ')} + GIT,.
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Since f(n,¢*~'t) and G|T, are orthogonal to £(x,tg"), we have, for some e,
A = x2(q,t")e(q), which has unit modulus.

(#11) Otherwise we have

m
g:Zgi>

i=0
where g; € £(x,tq") and 0 < m < v. Then, by (14.10),
Ay =Y ailTy € D E(x,tg).
i=0 i<m
This is a contradiction unless A = 0.
15. The first main theorem.

We shall say that £(x) is diagonalizable if it has a basis consisting of
eigenforms for all the Hecke operators T, (n € N).

THEOREM 15.1. &(x) Is not diagonalizable if, for some prime divisor q of
N, we have, in the notation of (14.1), either

(15.1) §<2 when v=3,
or
(15.2) §<v—2 when v>3.

PROOF. Let a prime divisor g of N satisfy either (15.1) or (15.2). Take
t, = ¢%, and observe that both ¢? and ¢ are unbranched, and that ¢||h’ and
g|h. Our object is to choose a character e modulo h such that

(15.3) fl& )Ty = £(1,9).

For v = 3 we have h = ¢ and we take e = 1, if § =0 or 2, and € = ¢,
if § = 1. In either case n = 1, by (14.7). For v = 4, we have h = ¢% and
we take € = ¢;. Finally, when v > 5, we have h = ¢* and take e = 1, which
gives n = 1. Then (15.3) follows in all cases, by (14.10).

Note that f(e;¢%) and f(1;¢) are in E;(x,1). If E(x) is diagonalizable,
then f(e;q®) is a linear combination of eigenforms for the operator Tj,.
Projecting from &(x) to &,(x, 1) we see that f(€;¢?) is a linear combination
of eigenforms in &,(x, 1) for T,. It follows from Theorem 14.4 that f(1;q)
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is a linear combination of eigenforms, which are either in £(x, 1), or not or-
thogonal to £(x, ¢"). But any eigenform of the latter type is clearly unique
(to within a scalar factor) and is a nonzero multiple of a function of the
form

f(L;¢")+ F,

where F' is orthogonal to £(x,¢"). This is a contradiction, and the theorem
is proved.

16. The second theorem.

Theorem 5.1 gives sufficient conditions for nondiagonalizability. We now
show that these conditions are also necessary. This involves a rather more
detailed examination of the structure of the level N.

THEOREM 16.1. &(y) is diagonalizable when, for every prime factor q of
N, either

(16.1) (a)6=v>1, (B)é=v—-123, or (¢)6<v-1<1.
PrOOF. We may suppose that N > 1, since the theorem is trivial in this

case, as £(x) then consists of scalar multiples of a single eigenform E(z).

Note first that the conditions (16.1) are the negation of (15.1) and (15.2).
When (16.1) holds, every prime divisor ¢ of N must belong to one of the
following four subsets:

(16.2) A={q|N: §=1r},

(16.3) B={g|N: §=v—-12>3},
(16.4) C={q|N:6<1, v=2},
(16.5) D={q|N: é6=0,v=1}

We take a fixed unbranched divisor ¢, of N, and write

(16.6) A1 ={g€ A: qlth}, D, ={qe€D: qlt},

(16.7) B; ={q€ B: ¢'|t1} (E=1lLv—1v),

(16.8)  Crw={q€C: q|lt, § =0}, Cn={qeC: q|t:, 6 =1},
(16.9) Caw ={q€C: ¢, 6 =0}, Ca={qeC: ¢, §=1}.

Define D, (t,) to be the product of all primes in the sets B,, B,, Chy,
Ci1, C21, and Dy, and D,(¢,) to be the product of all primes in Cyy. Write

(16.10) D(t1) = D(t1)D3(ty).
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LEMMA 16.1. If d|D(t,) then t,/d is unbranched.

This is clear from the previous definitions. We divide ¢, successively
by the prime factors (or their squares) of d and note that in each case the
inequality § < max(a, §) is satisfied.

Now take any character ¢ modulo h. The following table shows the
values of the associated character n defined by (14.7) in the different cases.

Column 1 2 3 4 5 6 7
Set B, B, Cho Cn Cao Ca D,
h' h/q hq h/q h/q hg hq h

é v—1 v—1 0 1 0 1 0

€ € € €€, € € €

The character 7 is a character modulo b’ (see (14.4)) in columns 2, 5, 6 and
7; in columns 1 and 3 provided that ¢ + N(e) and in column 4 provided
that ¢ t N(€€,).

For any divisor d of t; we write

(16.11) h(d) = (t1/d, dts).

We now define, for d|D(t,), the character nq4 inductively as follows:

(16.12) m=¢ nNga=n4 if ¢¢Ciyandgqgtd,
(1613) Ngd = T]dgq if q € Cll and q ‘f d,
(16.14) Ndg? = Ndg€q = Na€q if g€ CyUCy and ¢ td.

However, 14,2 is a character modulo h(dg?®) only if ¢ € Cy.

LEMMA 16.2. Let d|D(t,). Then

(16.15) x1(n, t1)e(n) = x1(n, t1 /d)g(n) =: A(n;t1, € x)
for (n,t,) =1, and

(16.16) X2(n, t2)€(n) = x2(n, diz)na(n) =: Aa(nsty, € x)

for (n,dt:) = 1.

Proor. It is sufficient to prove this when d is a prime ¢, and then, by
replacing ¢, by t,/q, etc. the general case follows. In this particular case
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the lemma follows from the last six lines at the bottom of p. 433 of [3],
since, for example, in the third and fourth lines we have

X1€ = €,m 15, X177 = €M ¢

We now define, for d|D(¢,) the multiplicative function C(d) as follows.
Put C(1) =1, and for any prime ¢|D(¢,) take

(16.17) C(q) = daf{x2(9)e(q) — " xa(g, tr/9),(2)} "

When ¢2|D(t,) we put

(16.18) C(¢) = aC(D){x2(9)e(9) — ¢ xala, /P )E(9)} -
We take
(16.19) C(mn) = C(m)C(n) for (m,n)=1.

In this way C(d) is defined for all d|D(¢;). We note that C(d) depends on
t1, nd, k, x and € as well as on d.

When ¢ € D, both terms in curly brackets on the right of (16.17) are
nonzero, but, for the other prime factors g of D(¢,) exactly one vanishes.
Also, ny = e except when ¢ € Cy; and then n, = €€,. We can bring the
notation of (16.17) into line with that used in [4], for the simpler case when
N is squarefree, by noting that, in the notation of (13.6),

xi(et/9) =x1(9),  x2(9) = x3(9), when  ¢|D(t,).
Now define
(16.20) g(t)= )Y C(d)f(nst/d).
d|D(t)

It is clear that the set of functions ¢.(t, ), for unbranched ¢, |N and characters
e modulo h, span the space £(x). We shall show that they are eigenforms
for all the operators Ty, (n € N). In what follows we shall omit the condi-
tion d|D(t,) under the summation sign, and replace it, where necessary, by
subsidiary conditions such as g|d or ¢ t d. For certain values of d, nq may
not be a character modulo h(d), and then we take f(n4;t/d) to be the zero
function.
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First of all we consider the action of T, on g(t1), where ¢ is a prime
divisor of N. There are several cases to consider.

() ¢1tt. By (14.9),
9 ()T, = Zqk_lc(d)XI(q,tl/d)ﬁd(‘l)f(ndQtl/‘I)
=" Mgt 6, x)9:(h),
by Lemma 16.2.
(ii) ¢ € A;. Since t; is unbranched, ¢”|¢; and, by (14.11),
ge(t)|Ty = C(d)xa (g, t2d)na(q)f (nas 11 /d)
= A?(q;tlaea){)gf(tl)a
by Lemma 16.2.

(lll) q S B1 U ClO U Cll-

ge(t)|Ty =D C(d)qr f(nug; ta/dq)

qtd
+¢*7! Z C(d)x1(g,t1/d)n4(9)f (na;t1/d)
qld
=D fnast1/A{aC(d/q) + " xalg, t1/d)a(g) C(d)}.
q|d

The term in curly brackets is zero by (16.17) and so

(16.21) ge(t)|T, = 0.

(iv) ¢ € B,_;. Since t|q is branched, we have (16.21) again.
(v) g€ B,.
ge(t)|Ty =Y C(d){x2(q, tad)na(q)f (na; t1/d) + f(nag t1/dg)}.
qtd

There is no contribution for d divisible by ¢, since ¢, /q is branched in this
case; see (14.10). Thus we have on the right

3" Cld)xa(g, tadyna(q) f(nas tr /d) + D C(d]q)f(nas t1 /d)

gtd qld
= A2((1; t1, €, X)gf(tl)'
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(Vl) q S Dl~

9(t)IT, = Z C(d){xa2(g tad)na(q)f(na;t1/d) + a1 f(na3t1/qd)}
qtd

+3° Cd)d* xale 0 /d)Ta() f (nata /d)

qld

= > C(d)ra(gstr, €, x)F (14311 /d)

gtd

+ Y fast1/d){q1C(d/q) + ¢* " x1(a:t1/9)T,(2)C(d)},
qld

on applying Lemma 16.2 to ¢, /¢ in place of ¢;. This gives

gf(t1)|Tq = A2(‘1;tla€a>()gf(tl)-
(vii) ¢q € Cyo U Cyy.

ge(t)|Ty = > C(d){x2(g, t2d)na(q)f (nas 1 /d) + f(nags t1/qd)}
gtd

+ > a1C(d)f(nags t1/dq)

qlld

+ 3 C(d)g " xa (gt /d)Ta(q) f (13 1 /d).
q?|d

When ¢ € C3,, the last two sums vanish, since then 74, and n4 are not
characters to the moduli h(dq) and h(d), respectively. Thus in this case, as
in (v) we have

gf(tl )|Tq = A2((1; t1,¢, X)gf(tl)~
It remains to consider ¢ € Cz. We have

g(#)|Ty = > C(d)Ao(g5 1,6, X)f (a3 1 /d)
qtd

+ > C(d/g)f(na;ta/d)

qlld

+> f(nasty /dD{aC(d/q) + C(d)g" " xa (e, 11 /da(a)}-
a71d

By (16.17) and (16.18) it follows that

gf(t1)|Tq = A2((]; tl » € X)gf(tl)
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Note that the values of the eigenvalues agree with Theorem 14.4.

It follows that the functions g.(¢, ), for unbranched ¢, |N and € a character
modulo h, form a basis of eigenforms for all operators T,, where ¢ is a prime
divisor of N. However, by (13.4) and Lemma 16.2 we see that they are also
eigenforms for the operators T,, with (n, N) = 1. Hence Theorem 16.1 is
proved.

17. An example.

We illustrate the results obtained by taking N = p?¢?,
where p and ¢ are different primes and assume that

N(ep) = p, N(eq) =4

The space is then of dimension 2p + 2. The table lists the eigenforms and
their eigenvalues (EV) under the action of the operators T}, and Tj,.

t D(t1) ge(th) EV for T, EV for T,
11 f(1;1) p*! ¢!

p P fep) (e#ep) 0 7" 'x1(g)E(q)
P P flep;p) —p~ (0 - 1 (1;1) 0 ¢!

P p (0% x2(p) " 'x1(q)

¢ 1 f(1;4%) P"'xa(p) x2(q)

pg® p flepd®) (e #ep) 0 e(q)

p¢® p flepipg®) = p~*(p — Dxa(p)f(1;4%) O ep(9)

p’¢ p f(1;9°¢%) + f(1;p4%) 1 1

18. Concluding remarks.

In §1 of [3] it was stated that Hecke was aware that not every space of
Eisenstein series was diagonalizable, and illustrated this fact in a particular
case in Satz 45a of his paper [1], where he took n = ¢*. This statement
requires clarification.

Hecke was concerned with Eisenstein series belonging to the principal
congruence group ['(N), and not to I'g(N). Thelevel N of the present paper
he called @, and he took a character ¢ modulo @ in place of our character
x. He put

Q=N=¢" ti=t,=¢,
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and
€= X = X1X2,

where y, and y2 were characters modulo ¢. Thus, in our notation,
v=3, 6=0orl.

Accordingly, t, and t; are not the divisors studied in the present paper,
since their product is not N.

In Satz 45a Hecke assumed that the relevant space was diagonalizable
and selected the eigenform corresponding to the Dirichlet series

(t17t2)_sL(s’ XI)L(S —k+ laX2)a

that he had constructed in a previous theorem, namely Satz 44. This is a
modular form F, which, since t,¢, = ¢*, is an infinite series in powers of

exp(2nittonz/N) = exp(2rignz) (n > 0).

Thus F(z+(1/q)) = F(z), and a contradiction is drawn from this fact. See
also pp. 39-43 of Chapter IV of [2].

In conclusion, the following misprints in [3] may be noted.
In equation (7.1) ¢! should be replaced twice by ¢ — 1.
On the right side of the equation following (8.7) f.(z,71/q) should be
replaced by f,(z,71/q).
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Some remarks on
2-generator hyperbolic 3-manifolds

Alan W. Reid

To Murray Macbeath on the occasion of his retirement

1. Introduction

By a hyperbolic §-manifold we shall always mean a complete orientable
hyperbolic 3-manifold of finite volume. A hyperbolic 3-manifold M is said
to be n-generator if the minimal number of elements required to generate
71 (M) is n. The focus of this paper is 2-generator hyperbolic 3-manifolds,
the main aim being to give a construction of infinitely many closed hy-
perbolic 3-manifolds which are not 2-generator, but have a proper finite
cover which is. Our interest in such examples was motivated by the deep
results contained in [4] and [10] which relate questions on 2-generator sub-
groups of hyperbolic 3-manifold groups to estimates on the lower bound for
the smallest volume of a closed hyperbolic 3-manifold. We also construct
certain 2-generator Haken hyperbolic 3-manifolds whose existence helps to
explain why more recent methods of Culler and Shalen (in preparation)
seem to be necessary for estimating volumes of closed Haken hyperbolic
3-manifolds.

To describe the connection between the articles referred to above and
the contents of this article we need to recall the definition of a Margulis
number of a hyperbolic 3-manifold.
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Let M = H3/T be a closed hyperbolic 3-manifold and e > 0. Then ¢ is
a Margulis number for M if for every point z of H?® and every pair of non-
commuting elements v and § of I' we have max{p(z,v(z)), p(z,8(z))} > e,
where p denotes the hyperbolic metric. Now it can be shown that if € is a
Margulis number for M, then M contains an embedded ball of radius /2,
see for example [4]. In particular by computing the hyperbolic volume of
this embedded ball, an estimate of the volume of M can be made.

With M as above, in ([10], Corollary 5.3) it is shown that if every 2-
generator subgroup of 7;(M) is free, then ilog 3 is a Margulis number
for M. This gives a volume estimate of vol(M) > 0.1124, which is of the
same order of magnitude as the smallest known (and conjectured smallest)
volume, namely that of the Weeks manifold (which is 2-generator), which
is obtained by (5,1),(5,2)-Dehn surgery on the Whitehead link, and has
volume approximately 0.9427.. .; see [13]. It is also shown in ([10], Corollary
1.9) that if the Z,-rank of the first homology of M is at least 4 then every 2-
generator subgroup of 7, (M) is free. Recall, that if M is a closed hyperbolic
3-manifold and F' a 2-generator subgroup of 71(M), then F has finite index
or F is free, see ([8], Theorem 6.4.1).

The natural question that arises from [10] is whether there exist closed
hyperbolic 3-manifolds which are not 2-generator, but have a finite cover
that is? If the answer were no, then the results of [10] would give a volume
estimate of the same order of magnitude as the Weeks manifold for all closed
hyperbolic 3-manifolds which are not 2-generator.

Furthermore, it is shown in [4], that if the rank of the first homology
of a closed hyperbolic 3-manifold M is at least 3, then the volume of M,
is greater than 0.92.... The proof of this result proceeds by analysis of
2-generator subgroups of (M) and their action on the sphere-at-infinity
to show that under this hypothesis on the first betti number, log 3 is a
Margulis number for M. Actually much more is shown but we will not refer
to it here.

Of course, the condition on the first betti number is a restrictive one. For
example most known manifolds of small volume have zero first betti number;
in particular, the Weeks manifold has finite first homology. However, if the
answer to the question raised above on 2-generator subgroups of 7,(M) were
no, the methods of [4] would apply to show that log 3 is a Margulis number
for all closed hyperbolic 3-manifolds that are not 2-generator. Hence morally
at least, small volume manifolds should arise from the class of 2-generator
manifolds, as experimental evidence suggests.
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In more recent work, Culler and Shalen have shown how to obtain volume
estimates for certain Haken hyperbolic 3-manifolds without the restriction
on the first betti number given above. This restriction is replaced by a tech-
nical condition on embedded surfaces in M, see §5 for a further discussion.
Again, the proof proceeds by analysing 2-generator subgroups of 7, (). In
85, which is an addition to an earlier version of this paper, we construct
closed Haken hyperbolic 3-manifolds whose existence has implications for
this more recent work of Culler and Shalen.

2. Preliminaries

In this section we recall some relevent facts that will be required in our
constructions.

2.1 Let T denote the torus with an open disc removed. We can construct a
hyperbolic 3-manifold M, by taking the mapping torus of a pseudo-Anosov
homeomorphism ¢ of T which is the identity on 8T [12]. M, is a fiber bundle
over the circle with fiber a once punctured torus, and in the sequel will
be referred to as a hyperbolic punctured torus bundle. The monodromy of
such a fiber bundle can be represented by a hyperbolic element of SL(2, Z),
i.e., an element with two real distinct eigenvalues. Given two hyperbolic
punctured torus bundles with monodromies ¢ and ¢ then My and My are
homeomorphic if and only if ¢ is GL(2,Z) conjugate to ¢ or ¢!, see ([2),
§1.3).

Let R = ((l) :) and L = (: (1) . R and L generate SL(2,Z) and so
each hyperbolic element can be written as a word in R and L. In par-
ticular we can associate to a hyperbolic punctured torus bundle its RL-
factorization. That is, any hyperbolic element ¢ of SL(2, Z) is conjugate to a
word of the form +R% L%z ... L% for integers a,, ag,. .. a,. This word is the
RL-factorization of M.

2.2 Evidently, from the construction of My, the fundamental group of M,
is an HNN-extension of a free group on 2-generators. By being careful we
can choose a meridian/longitude pair for My, i.e. a pair of generators for
H,(0My; Z), for which a meridian z is the stable letter of the HNN-extension
and the longitude £ is the boundary of a fiber. Referring to Figure 1 below,
the meridian z is t x [0,1]/4 and £ is as shown.
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a
/
b b
!
a
Figure 1

From the fibration of M, over the circle we have the following short
exact sequence. Here we have specified a pair of generators a and b for the
fundamental group of the fiber.

l1-<ab>-m(My)=<a,bzr>>7Z—1.

Of course by construction ¢ maps trivially, under the map to Z above.
Also observe that every hyperbolic punctured torus bundle is at “worst”
3-generator.

2.3 For coprime integers p and ¢, by (p, ¢)-Dehn filling on My we mean
cutting off M, and gluing in a solid torus V so that a meridian of V is
identified with 2P¢9. The result of (p,q)-Dehn filling will be denoted by
My(p,q). By Thurston’s hyperbolic Dehn surgery theorem (see [11]), this
is a hyperbolic manifold for all but a finite number of p and q.

3. Results

Here we shall state the main theorem and prove some easy corollaries.
The proof of Theorem 1 occupies the next section.

THEOREM 1. Let My be a hyperbolic punctured torus bundle. Then for
|p| > 1, My(p, q) has a proper 2-generator subgroup of finite index.

COROLLARY 1. There exist infinitely many closed 2-generator hyperbolic 3-
manifolds which have a proper finite sheeted cover which is also 2-generator.

Proor. Simply take the punctured torus bundle itself to be 2-generator.
For example all (p, 1) surgeries, for |p| > 4, on one component of the White-
head link, see [7].
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COROLLARY 2. There exist infinitely many closed 3-generator hyperbolic
3-manifolds which have a proper finite sheeted cover that is 2-generator.

ProoF. Consider the hyperbolic punctured torus bundle M whose mon-
odromy as a matrix in SL(2,Z) is (_52 _12 Then M is 3-generator as
H\(M)is Z& Z; @ Z,. Doing any (2p, q)-Dehn filling on M continues to
be 3-generator — the Zs-rank of the first homology is 3. The result then
follows by choosing p and ¢ large enough so that the manifold obtained by

the appropriate Dehn filling is hyperbolic. Il

REMARK. As remarked in the Introduction, in [10] it is shown that if, for
some prime p, the Z,-rank of the first homology of the closed orientable
3-manifold M is at least 4, then every 2-generator subgroup of m,(M) is
free. The examples given in the proof of Corollary 2 show that this result
fails for Z,-rank 3.

4. Proof of Theorem 1

Using the exact sequence of §2.2 we can construct a “canonical” family
of p-fold cyclic covers of M. Namely, compose the map to Z with reduction
modulo p for any positive integer p > 2 and take the cover corresponding to
the kernel. Denote these covering manifolds by My ,. These manifolds are
also hyperbolic punctured torus bundles; they are simply the mapping torus
of ¢7. Also a meridian for M, , is z?, with longitude the boundary of the
fiber and this defines the fundamental group of M, , as an HNN-extension
of < a,b > by z?.

Now choose a pair of coprime integers (p, ¢), and consider the manifold
My(p, q) obtained by (p,¢)-Dehn filling. The fundamental group of this
manifold is obtained from that of M, by adjoining the relation 2749 = 1.
Together with the exact sequence of §2.2 we get a homomorphism

ap,q 1 M(My(p, 9)) = Zyp,

which is compatible with the exact sequence. That is, the cover of M,
corresponding to the kernel of the homomorphism to Z, obtained by factor-
ing through m(My(p, ¢)) composed with a, 4 is My, ,. However, this p-fold
cover of My(p,q) is simply that given by (1,¢)-Dehn filling on My ,. Now
the chosen meridian for M, , is z?, and since the corresponding longitude
is a word in a and b (recall it is the boundary of a fiber) it follows that in
Ker(apyg), z¥ is a word in a and b. Thus Ker(q, 4) is 2-generator, which
proves the theorem. I
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5. 2-generator hyperbolic Haken 3-manifolds

As stated in the Introduction, in more recent work in preparation, Culler
and Shalen have obtained volume estimates for a “large” class (see below
for a description) of closed, Haken hyperbolic 3-manifolds. In particular the
assumption that the first betti number is at least 3 is replaced by restrictions
on the embedded incompressible surfaces in the 3-manifold. This leads to
a question about existence of certain Haken hyperbolic 3-manifold groups
and the structure of their 2-generator subgroups (see below). Here we give
a partial answer to the question.

Let us describe this restriction in more detail. We need to make a
definition.

DEFINITION. A compact 3-manifold with boundary N is called a relative
graph manifold if N is the union of two submanifolds F and T where F
is an I-bundle over a (possibly disconnected and non-orientable) surface B,
the intersection A = TN E is the induced I-bundle over the boundary of B,
and each component of of A is an annulus in the boundary of T" which is
homotopically non-trivial in 7.

A closed embedded incompressible surface S in a 3-manifold M is called
a fibroid if the (possibly disconnected) manifold obtained by splitting M
along S is a relative graph manifold. A closed Haken hyperbolic 3-manifold
M will be called fibroid (resp. non-fibroid) if it contains an embedded in-
compressible surface which is a fibroid (resp. if no embedded incompressible
surface is a fibroid).

The result of Culler and Shalen then says, roughly (there is a further
condition in the case where the surface separates), if M is a closed, orientable
hyperbolic 3-manifold which contains an embedded incompressible suface
which is not a fibroid, then vol(M) is at least 0.35. Again, the study of
2-generator subgroups of (M) is involved in obtaining the estimate, and
as a consequence of these methods Culler and Shalen posed the following
question:

QUESTION. Does there exist a closed Haken hyperbolic 3-manifold which is
non-fibroid and whose fundamental group contains a 2-generator subgroup
of finite index?

The relevance of the question is that if every 2-generator subgroup of
a non-fibroid hyperbolic 3-manifold were of infinite index and had non-
empty set of discontinuity on the sphere-at-infinity, then the previous work
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[4], would apply to get a volume estimate of 0.92, superceding the volume
estimate of 0.35 stated above.

We point out here that special cases of a fibroid are, the fiber in a
fibration over the circle, or the common boundary of the union of two twisted
I-bundles over a closed surface. Moreover, in this latter case the manifold
is double covered by something which is fibered, see [6]. In the remainder
of this section we give the following partial answer to the Question.

THEOREM 2. There exist closed Haken hyperbolic 3-manifolds which are
not fibered, not double covered by something which is fibered and which
have a finite cover which is 2-generator.

The proof is based on a refinement of the methods of the proof of Theo-
rem 1 together with an analysis of surgery on boundary slopes of punctured
torus bundles.

For convenience we remind the reader of some salient points. Let M
be a compact, connected, irreducible, orientable 3-manifold such that oM
is a torus. The unoriented isotopy class of a simple closed curve in M
will be called its slope. Now let S be a surface with non-empty boundary,
properly embedded and incompressible in M; in what follows S will be
called essential in M. The boundary components of S are disjoint non-
trivial simple closed curves in M, all having the same slope r, called the
boundary slope of S. More generally a slope r on OM is called a boundary
slope if it is the boundary slope of some embedded, properly embedded
incompressible surface in M.

By specifying a framing, i.e. a basis for the first homology of the torus
the slopes can be parametrized by Q U co. If we fix a framing, and p/q
(possibly o0) is a boundary slope of M, by Dehn filling this boundary slope
we mean performing (p,q)-Dehn filling on M, again with respect to the
chosen framing. It is a theorem of Hatcher, [5] that M as above has only
finitely many boundary slopes.

PrROOF OF THEOREM 2. We first make a few necessary remarks on bound-
ary slopes of hyperbolic punctured torus bundles. As stated above to make
precise statements about boundary slopes, one has to fix a framing for 9M;.
We will be using the results of [2]. Their description of essential surfaces in
hyperbolic punctured torus bundles and their boundary slopes is given in
terms of a particular framing, which need not coincide with the choice made
in §2.2. However, the description of how to transform between framings and
the effect on the boundary slope is well described in §6.2 of [2]. It will be



216 Reid

implicit from here on that in any reference to boundary slope, the framing
is that described in §2.2, unless otherwise indicated.

LEMMA 3. Let My be a hyperbolic punctured torus bundle and assume that
p/q is a boundary slope for which My(p,q) is hyperbolic. Then My(p,q) is
Haken.

ProoF. We will apply Theorem 2.0.3 of [3]. This describes exactly what
happens when one does Dehn filling on a boundary slope of M. The four
possibilities are a connected sum of Lens Spaces, a Haken manifold, M,
contains a closed embedded non-boundary parallel surface which may be
compressible upon Dehn filling or the slope corresponds to the boundary
slope of a surface which is a fiber.

By assumption, My(p, q) is hyperbolic so the first possibility does not
apply. From (2], M, has no closed embedded incompressible surfaces other
than tori which are boundary parallel. This rules out the third possibility
and the last case is ruled out as My is fibered in a unique way, fibers being
punctured tori of slope 0/1. Dehn filling this slope gives the torus bundle
over the circle with monodromy ¢, and in particular is non-hyperbolic. Thus
My(p,q) is Haken. 1

Asnoted in the proof of Lemma 3 there is always at least one Dehn filling
on a hyperbolic punctured torus bundle that gives a non-hyperbolic mani-
fold. The next result, due to Bleiler and Hodgson ([6], Theorem 10) shows
that under conditions on the monodromy this is the only one. Notation
used in the statement of Theorem 4 is that given in §2.1.

THEOREM 4 (BLEILER-HODGSON). Let M, be a hyperbolic punctured
torus bundle whose monodromy has an an RL-factorization SL(2,Z) con-
Jjugate to an element of the form, £ R*1 L*2 ... L% where a; > 0 for each 1
and n is even. Then there is an integer N > 0 such that for alln > N every
Dehn filling but one on M yields a hyperbolic 3-manifold, the exception
being the case described above.

We can now complete the proof of Theorem 2. This will entail a choice
of ¢ in order to apply [2] and to restrict Tor(H;(My, Z)) which will sim-
plify calculations. We shall assume ¢ has an RL factorization of the form
—(RPL?)Y where p is an odd positive integer, ¢ = 2" and n is a positive
integer such that 2" is greater than N as given in Theorem 4.

An elementary argument shows that |Tor(H, (Mg, Z))| = |trace(¢) — 2|.
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LEMMA 5. Let ¢ be an element of SL(2,Z) of the form, £(RPLP)? where
p is an odd positive integer and ¢ = 2", for n a positive integer. Then

trace(¢) is odd.

ProoF. Let X, = RPL?, then X, = (H;)”z P). It suffices to show that
modulo 2, X has non-zero trace. Since p is odd, reducing coefficients of X,
modulo 2 gives ((l) i) This is an element of order 3 in SL(2, F), where F,
is the field of two elements. By choice of ¢, X will continue to have trace
1, as required. B

Therefore from Lemma 5 and the remark preceeding it we can conclude
that |Tor(H, (Mg, Z))| is odd. Clearly the elements —(RPL?)? as described
above are hyperbolic, so that the associated punctured torus bundles are
hyperbolic.

From the classification of essential surfaces and their boundary slopes
given in [2], we can read off that the hyperbolic punctured torus bundle with
monodromy given by —(LP RP)? has an essential surface with two boundary
components of boundary slope —2/1, with respect to the “standard framing”
given in [2]. By conjugating with R? we get ¢ as in Lemma 5. Now we can
use the contents of §6.2 of [2] to describe the boundary slope in terms of the
framing given in §2.2; a direct calculation shows that the boundary slope
has the form —2/r for some integer r. The important point to note is that
we just require the numerator to be different from +1 so as to apply the
method of proof of Theorem 1 (see below).

To conclude, M = M4(—2,r) is hyperbolic by Theorem 4 and Haken by
Lemma 3. Indeed, by choice of ¢, H1(M,Z) has the form, Z, x A where
|A| is finite of odd order by Lemma 5. Thus M has a unique double cover.
This double cover corresponds, as in the proof of Theorem 1, to a (—1,7)-
Dehn filling on the hyperbolic punctured torus bundle that is the unique
double cover of M. In particular its homology is also finite, so it is not
fibered. Finally the proof of Theorem 1 shows that the double cover of M
is 2- generator. i

REMARKS.

(1) In the closed hyperbolic 3-manifolds constructed above the embedded in-
compressible surfaces are always geometrically finite. This follows since
it is known that if an embedded incompressible surface in a hyperbolic
3-manifold is geometrically infinite and separating then the manifold is
the union of two twisted I-bundles and, as pointed out above, it follows
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from [6] that such a manifold is double covered by something which is
fibered. Of course the construction shows that this cannot be the case
here. In addition, by [9], Corollary 3, it follows that the surface cannot
be totally geodesic.

(2) Asdefined above, the class of surfaces which are fibroid contains properly
those which are geometrically infinite. Unfortunately there seems to be
little at present that one can say geometrically that would distinguish a
fibroid which is quasi-Fuchsian from other quasi-Fuchsian surfaces.
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Uniformization, graded Riemann surfaces
and supersymmetry

P. Teofilatto

Dedicated to A. M. Macbeath on his retirement

Abstract. A projective structure on a Riemann surface M is achieved by lifting to
a universal covering space of M the ratio of solutions of a linear differential equation
defined on the surface. We show that these solutions, and vector fields preserving the
projective structure induced on M, define a sheaf of graded Lie algebras. At the same
time, we construct a sheaf of graded Lie algebras over the Teichmiiller family of Riemann
surfaces, which is related to the process of simultaneous uniformization for the family.
This structure constitutes a modular supersymmetry, an extended notion of local sl,~
symmetry, which is motivated by Grand Unification Theory in theoretical physics.

Introduction

A projective structure on a Riemann surface M is a reduction of its
pseudo-group of holomorphic coordinate transformations to the group of
fractional linear transformations PL(2,C). On a Riemann surface of genus
g > 2, this can be achieved by choosing a projective connection, an element
of an affine space over the vector space of globally defined holomorphic
quadratic differentials [7]. A new complex atlas on M with projective coor-
dinate transformations is obtained by composing the old coordinates with
the ratio of two linearly independent solutions of a differential equation
defined on the surface.

A significant fact, proved in [9], is that solutions of such a uniformizing
equation must be local spinors, sections of a square root of the tangent
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bundle of M. Starting from this point, we prove in this paper that the
process of projective uniformization of a Riemann surface M is related to a
sheaf of graded Lie algebras defined on M (Theorem 1).

This result extends to moduli: let us consider the bundle P, of all pro-
jective connections over all marked Riemann surfaces, defined in [10]. Then
a generalization of the uniformization theorem, due to Bers (3], selects a
holomorphic section of this bundle. By means of this section and a (lo-
cal) holomorphic section of the family of spin bundles over the Teichmiiller
space, we obtain a sheaf of graded Lie algebras over the Teichmiiller space
(theorem 2), intrinsically related to the process of simultaneous uniformiza-
tion as the previous sheaf of graded Lie algebras is related to the projective
uniformization of a single Riemann surface. This result motivates consid-
eration of such structures for general holomorphic families of surfaces; we
indicate how to identify the bundle of relative 3-differentials as the space of
infinitesimal deformations. Our constructions thereby establish a link be-
tween classical uniformization theory of Riemann surfaces and the graded
extensions of Teichmiiller theory for Riemann surfaces introduced recently
in superstring theory ([1],{11],{12]). After defining graded Riemann surface,
we prove in Section 2 that such an object can be constructed from the
graded Lie algebra sheaf arising in the projective uniformization. Then we
show in Section 3 that, after a suitable grading of the sheaves (given via the
exterior algebra functor A between bundles and graded manifolds ), there is
coincidence between the space of infinitesimal deformations of the objects
constructed here and the analogues of Teichmiiller space for graded/super
Riemann surfaces discussed by other authors.

We belive that this connection between classical uniformization theory,
graded complex structures on surfaces and super-symmetry is of some in-
trinsic interest. Moreover it is important in understanding the action of the
modular group on this super-moduli space (a problem treated in [8]), and
has a bearing on the definition of a measure of integration for superstring
theory purposes [15].

2. Graded Riemann surfaces

Physical theories aiming to provide a unified description of all funda-
mental interactions among particles are usually described by perturbation
series, which are currently affected by divergences due to gravitational in-
teractions. One such model is String Theory, where the primary objects are
not particles but strings, one-dimensional objects whose space-time evolu-
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tion describes surfaces, compact orientable surfaces in the case of closed
strings. This relates string theory to many interesting aspects of the the-
ory of Riemann surfaces. It is hoped that divergences will be avoided by
introducing “supersymmetry”, leading to a so-called superstring theory. To
represent supersymmetry, many mathematical theories have to be enlarged
by adding their corresponding “odd-counterparts”. The infinitesimal ver-
sion of such symmetry is a graded Lie algebra.

DEFINITION 1. A graded Lie algebra is a Zo-graded algebra A = Ao P 4,
such that its Z; graded product, which is symmetric (respectively skew
symmetric) on the 0 (respectively 1) graded part, verifies the generalized
Jacobi identity

(_1)IIXIIIIZII(X’ (v, Z))+(_1)IIXIIIIYII(Y’ (z, X))_|_(_1)IIZIIIIYII(Z, (X,Y))=0

where || *|| =i if x € A;, ¢ =0,1. We call 4y, A; the even and odd sectors
of the graded Lie algebra A.

EXAMPLE: The algebra osp(2|1). Take three even (L-1,Lo, L,) and two
odd (G’l2 , G—%) generators with defining relations:

[Li, Lj) = (j — )L
{Ga, G} = 2Layp
[Li) GO’] = (Ot + z./2)(;0'+i = _[Gav Lz]

where 1,57 = —1,0,1, o, 8 = -;—,—-;—, and sums over indices are modulo 2.
Then one checks that this defines a graded Lie algebra, whose even part is
the Lie algebra sl(2, C). This algebra is central in our work.

Just as derivations (vector fields) on manifolds define sheaves of Lie
algebras, sheaves of graded Lie algebras are defined by derivations on graded
manifolds. For our purposes, it is enough to define graded manifolds of
dimension (1|1)T.

DEFINITION 2. A holomorphic (1|1) graded manifold is a pair (M, A) where:
i) M is a complex manifold of dimension 1.

i1) A is the graded sheaf of sections of the exterior algebra bundle A E, with
E some holomorphic line bundle on M.

f a general (m|n) graded manifold is defined by a sheaf of Z graded algebras locally
isomorphic to the sheaf of sections of the bundle AFE of exterior algebras, with E a bundle

of rank n over the m dimensional manifold M.
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By definition, if U is an open set of M where E trivializes, then the local
sections of A over U can be written as fo(2)+ f1(2)8 where fo, fi belong to
Om(U) and 6 € O(E)(U), so that 62 = 0 in A(U). Thus A(U) is a direct
sum A(U)o P AU), = O(U) P OWU)8.

The grading on A induces a grading on End(.A) and the notion of graded
derivation respects this grading: if U is an open set of M, define a graded

derivation of A(U) to be an endomorphism X : A(U) — A(U), such that

X(f 9) = X(f)g + (=D)IXWIAN £ x ()

where ||f||=0if f € A(U)o, ||fll=1if f€ AU), and || X||=0o0r1as X
preserves or changes parity. The set of graded derivations of A(U) is denoted
Der(U, A). We need the following elementary results (for a proof,see [2]):

LEMMA 1. The presheaf U — Der(U, A) defines a sheaf Der(M, A) over M;
it is the sheaf of graded derivations of (M, A).

LEMMA 2. If X, Y are graded derivations, define the Lie bracket of X withY
(X,Y) = XY — (-1)*I¥l(y, x)
Then (-,-) makes Der(M, A) a sheaf of graded Lie algebras.

LEMMA 3. Define the elements %, % of Der(M, A) as follows:

0
L (fo(2) + Fi(2)6) = ful2) + Fi(2)0
2 (o) + Fi(2)0) = (o)

Then Der(U, A) is a free A(U) module with basis 32’ %
z
To define a graded Riemann surface a condition has to be imposed on
the graded Lie algebra sheaf Der (c.f. [1],[12]):

DEFINITION 3. A graded Riemann surface is a holomorphic (1|1) graded
manifold (M, A) endowed with a locally free subsheaf 7; C Der(M, A) of
rank (0|1) such that, if D is a local base (generator) of 7y, then (D, -%(D, Dy)
is a local basis of Der(M, A).

To construct a graded structure on a Riemann surface M, it is enough
to choose one of the 229 square roots of the canonical bundle K. Namely,
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let L — M be such a bundle, then apply the functor A from the category
of vector bundles to the category of graded manifolds, sending L to (M, A),
where A is the sheaf of sections of A L. Then the graded derivation defined
by D = 2 + 60—
04 0z’
holomorphic section of LI, generates over A a subsheaf of Der(M, A), and
it verifies: $(D, D) = %; therefore (D, (D, D)) generates Der(M, A), and

a graded Riemann surface is defined.

where z is a local coordinate of M and 6 is a local

Conversely, let (M, A) be a graded Riemann surface, and 7, its subsheaf
of Der of rank (0[1). Then it follows that Der(M, A)/7; is isomorphic to
the tangent bundle TM, and the isomorphism 73 Q 7, — Der(M, A)/T,
induces an isomorphism 72 & TM. Thus a spin bundle over M is defined,
and we have:

PROPOSITION 1. A is an isomorphism from the category of spin structures
on Riemann surfaces (and morphisms preserving such structures) to the
category of graded Riemann surfaces (with their morphisms).

EXAMPLE. Take the Riemann sphere CP! with its tautological line bundle
L, then the (1|1) graded manifold GCP'= (CP' A), with A= ALis a

graded Riemann surface.

2. Projective uniformization and sheaves of graded Lie algebras

Next we shall develop a deeper connection between graded Riemann sur-
faces and an important construction in Riemann surface theory. Namely we
can associate a graded Riemann surface (M, A) to the process of projective
uniformization of the Riemann surface M. The sheaf of graded derivations
of (M, A) will correspond to a sheaf of graded Lie algebras over M arising
naturally from the projective uniformization.

Recall that a projective structure on a Riemann surface is given by an
equivalence class of projective atlas on M, so that the transition functions
for local coordinate transformations lie in the group PL(2,C).

A projective structure is obtained by deformation of local coordinates
of M, {Uq, 2o} via a solution of the equation

{wa,za} = ha- (1)

1 Alternatively, with [2] we can regard AL as Op@®IIL, where II is the parity changing

functor; then 6 is actually a section of IIL, and § is the dual section.
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where {-,-} is the Schwarzian derivative and (hs) belongs to the space of
projective connections, an affine space over the space of global quadratic
differential forms on M. We describe this process briefly; for a detailed
account the reader should refer to [7], [9].

From the transformation properties of the Schwarzian derivative and
of (ha) it follows that the new atlas on M, {Ua,wq © 2o}, has projective
transition functions. Moreover the w, can be patched together to define
a local homeomorphism f : & — CP! from the universal covering space
U of M to CP! (the developing map) and a (monodromy) homomorphism
p is defined from the group I' = =,(M) of covering transformations to
PL(2,C), such that f(vyz) = p(y)f(2). If p(T') acts discontinously on f(/),
then f(U)/p(T) is isomorphic to M = U /T, and this is called a projective
uniformization of M. Hence, given a projective connection h, we can vary
the way of regarding M via patching of open sets on CP!, or in other words
we can deform the action of the group I' by means of the pair (f, p).

It is well known that we is a solution of (1) iff w, is a ratio of two
linearly independent solutions of the linear equation:

ul + éhaua =0. (2)

Hawley and Schiffer and, independently, Gunning proved the following sig-
nificant fact [9].

PROPOSITION 2. Solutions of (2) are (local) sections of L™}, the dual of a
square root of the canonical bundle K of M.

Namely it follows from the transformation properties of the projective
connection h that if u4,vs are solutions on overlapping charts then, on the
overlap, the relation ua(fap(zs)) = vﬂ(zﬂ)f("ﬂ(zﬂ)% must hold, and so the
solutions of the differential equation u” + $hu = 0, defined on the Riemann

surface M, transform as differential forms of order —-;—.

Now to construct a projective atlas on M a choice of a spin structure L
must be made. Solutions of the equation (2) are sections of L™! defining
a sheaf over M; this sheaf will form the odd sector of our sheaf of graded
Lie algebras, which is in fact close at hand: the even sector is generated by
the odd one and it is the sheaf of tangent vectors preserving the projective
structure on M. These vectors are defined by an equation arising in the
theory of deformations of projective structure (see [4]), which is now briefly
recalled.
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An infinttesimal deformation of the projective structure or, equivalently,
of the pair (f, p), can be achieved by finding solutions f, of the equation

{fa+ efarza} = ha + €da. (3)

where f, is a solution of (1) and ¢4 is in the tangent space to the projective
connections, that is a quadratic differential. It follows that fa is a solution
of (3) if and only if

fa

fl

is a holomorphic vector field (section of K ') satisfying the equation

(fo)* =

(fa*)m + 2ha(fa*)l + (ha)lfa* = ¢a-

Furthermore the homogeneous form of this equation
(fa*)lll + 2ha(fa*)l + (ha)lfa* — 0 (4)

determines vector fields which are infinitesimal automorphisms of the pro-
jective structure.

Now we can state the core result of this paper, connecting the projective
uniformization of Riemann surfaces with the graded structures of §1.

THEOREM 1. Solutions of equations (2) and (4) define a sheaf A of graded
Lie algebras over M, with stalks isomorphic to osp(2,1).

ProOOF. If ul, , % are linearly independent solutions of (2), define the k-
projective coordinates w}, = wq © zo, Where wy = ufy/ui. In terms of these
coordinates {h,} is represented by the zero connection. Thus the sheaf of
solutions of (2) is isomorphic to the sheaf of solutions of d?u}/dw?? = 0;
therefore u? is a section of L™! of the form ay + ayw?, i.e. a polynomial
of degree one. We denote by Py(L™!) the subsheaf of O(L™!) consisting of
such degree 1 polynomials.

Solutions of (4) for h = 0 satisfy d°f%/dwz® = 0; hence f% are sections
of O(K~') which are polynomials of degree 2 , defining a subsheaf P(L~?)

of O(L™?). If ( 0 2) are generators of the sheaf P;(L™!) | then tensor

08’ " 08
9 9 ,0 i
5757 55) o P, Now

products of such sections give a basis (



Graded Riemann surfaces 227

A=A B A =P(L7 )P Pi(L7") has a structure of Z,-graded algebra
with the product (-,-), where

(=) : Pa(L7%) x Po(L7?%) — Po(L7%)
is the commutator on fields,
(=) s PULTH) x Py (LT — Py(L7?)
is twice the tensor product of sections of L™, and
() : Po(L7%) x Py(LTH) — Py(L7)
is the Lie derivative of vector fields on sections of L™!, given by

d 0. ,.dy 1df 0

It is now a simple calculation to verify that A is a graded Lie algebra sheaf
on M whose stalks are isomorphic to osp(2|1). |

This theorem holds for any Riemann surface of genus ¢ > 2, and it
applies also to CP!, on which there is a natural (and unique) projective
structure and a unique spin structure defined by the tautological line bundle
L — CP'. The subsheaves Py(L™"), Po(L2) of L', TCP! consisting of
polynomials of degree one and two respectively, give the global sections
of the bundles L™! and TCP'. Therefore H(CP !, TCP')@ HO(CP', L"),
with the product (- ,-) defined in Theorem 1, is a graded Lie algebra iso-
morphic to osp(2|1). It follows that the graded Lie algebra sheaf A(M) on
M can be also regarded as the pull-back by the developing map f of the
graded Lie algebra H'(CP',TCP')@ H°(CP',L™"). This latter is eas-
ily seen to be equivalent to the (global) graded derivations of the graded
Riemann sphere :

LEMMA 4. The graded Lie algebra H°(CP', TCP'Y@ H°(CP', L) is
isomorphic to the globally defined graded derivations of GCP! .

PROOF. We define an isomorphism of graded algebras as follows.
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This map carries the sections — to the globally defined graded deriva-

g 0
96’ “o8
tions D, zD of GCP'. Now we generate the globally defined even deriva-
tions using the anticommutator:

! 9
a{g—%’g"lz} = L-—l = 5
1 5 5
§{g—%’g%}—£0 Za—+ 26_89
1 , 0 P
§{g%’g%} =L, =2 % +z0_86'

One checks that (ﬁ_l,ﬁo,ﬁl,g_%,g%) define an osp(2|1) algebra.

3. Families of graded Riemann surfaces and sheaves of graded
Lie algebras over the Teichmiiller family

Graded Riemann surfaces are motivated by the supersymmetric exten-
sion of string theory. The physical content (namely the multiloop contri-
bution) of string theory can be reduced in each genus to the calculation of
integrals defined on the space of moduli of conformally inequivalent Rie-
mann surfaces, and it is known that local coordinates (moduli) for this
space belong to a 3¢ — 3 dimensional complex open set isomorphic to the
Teichmiiller space Ty.

In superstring theory, the so called “supermoduli” have to be taken
in account together with moduli, so that one needs to compute integrals
defined on a (39 — 3|2¢g — 2) dimensional graded manifold, the supermoduli
space. This space has been introduced in sheaf theoretical terms by Manin:

DEFINITION 4. A super-family of graded Riemann surfaces is given by a
smooth proper morphism

K (Y, Ay) — (VV, AW)

of graded manifolds, where (Y, Ay ) has dimension (m+1|n+1) and (W, Aw)
has dimension (m|n), together with a subsheaf D of rank (0|1) of the sheaf

of relative graded derivations, Dery,; , such that D) D is isomorphic to
Derya /| D.

We have used the term super-family of graded Riemann surfaces since it
is true that a graded Riemann surface can be regarded as a super-family over
a point: (Y, Ay) — (s,*): its structure is induced by the sheaf 7; of odd
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derivations over the Riemann surface Y. The family of Definition 4 is called
SUSY-family in [12] and super Riemann surface in [11]; an appropriate
graded extension of Teichmiiller theory was also developed by these authors.

PRrOPOSITION 3. The space of local deformations of super Riemann surfaces
is the graded manifold (Ty, A'¥,), where T, is the Teichmiiller space and
U, is the bundle of global relative %—diﬂ'erentials onT,.

For the proof see [11] or [12]. The bundle ¥, exists, for instance, by results
of [5].

Here we outline a different approach to supermoduli, leading to an equiv-
alent construction, based on §2.

DEFINITION 5. Given a holomorphic family of Riemann surfaces W — S,
a family of osp(2|1) algebras B over W — S is a holomorphic sheaf B over
W, whose restriction to any fiber W, of W is a sheaf of graded Lie algebras
over W, with stalks isomorphic to osp(2|1).

A typical example is the “Teichmiiller family of osp(2|1) algebras” to be
constructed below in Theorem 2. This will show that as the uniformization
of a single Riemann surface is related to a sheaf of osp(2|1) algebras over
it, in the same way the process of simultaneous uniformization of a family
of Riemann surfaces leads to a sheaf of osp(2|1) algebras defined over the
family.

THEOREM 2. The process of simultaneous uniformization of Riemann sur-
faces, holomorphic in moduli, determines a sheaf A of graded osp(2|1) Lie
algebras over the Teichmiiller family.

PRroOOF. First we summarise the Bers construction of the Teichmiiller family
7 : Vy — T,. For more details, see 3], [13].

Fix a reference Riemann surface M with its Fuchsian uniformization:
M = U/T where U is the upper half plane and I' C PSL(2,R). Then let

T, ={fu:CP' — CP', y-quasiconformal } /~

be the Teichmiiller space, where the p’s are measurable complex functions
on U with sup_ ¢y |p(2)| < 1 and satisfying

7(2)

pz) = #W),() for ye€T.
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Each p is extended to CP ! by y = 0 on the lower half plane_ﬁ; for any p, fu
is the unique normalised solution of a Beltrami equation df, = pdf, and
the equivalence relation in the definition of T, reads as follows: f, ~ f, iff

fu=7Ff onL.

To describe the family V,;, we note first that the domain U, = f,(¥)
depends only on the equivalence class 7 = [f,], and that its boundary
Cr = {fu(z), £ € RUoo} is a holomorphic function of 7. Moreover the uni-
formizing group T' is transformed to a quasi-fuchsian group I', = f,I'f, ™"
with C, as limit set. Now F, = {(2,7) € U, x T;} is a fiber space over
T,, and the T action on Fy : (v,2,7) — (y-(2),T), where v, = f”'yf”"l,
produces a complex fiber space 7 : V; — T, whose fibers are the Riemann
surfaces M, = U, /T,. In other words we have an assignment of projec-
tive structures on M, which is holomorphic in 7, the modular parameter.
Since projective structures on M, are in one to one correspondence with
projective connections, we can say that the Bers construction of the fam-
ily V; — T, singles out a holomorphic section ¢ of the bundle P, of all
projective connections over all marked Riemann surfaces [10]. Namely, the
value of o on 7 € T, is the projective connection on M, characterised by
the Schwarzian derivative of the function f,, which is univalent on L.

{f‘rvz} = ¢r = U(T)'

Now we choose a (local) holomorphic section of the family of spin bundles
L, over the Teichmiiller family [14] and denote by L, the fibers. Then, for
each 7 € T; we can define the sheaf A(7) over the surface M,, as in §2, by
the data (o(7), L,."l). Since everything varies holomorphically with 7,

A= | A

€T,

is a holomorphic sheaf of graded Lie algebras over the family V, — T,. I

The sheaf A is intrinsically related to the process of simultaneous uni-
formization of Riemann surfaces: any stalk of A gives solutions of equation
(2) and vector fields preserving that projective structure for which the uni-
formization process is holomorphic with respect to 7 in Tj,.

To conclude, we outline the deformation theory of these super-families,
and comment briefly on further developments. The deformations of the
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sheaf of graded Lie algebras A over a fixed Riemann surface M are described
by the Eichler cohomology sets:

HY(M, A) @D H' (M, A)

where H!(M, Ay) represents the infinitesimal variation of the complex and
projective structure of M, while H'(M, A,) represents:

i) variations of the chosen spin structure L~!, that is non-trivial affine
bundles over L™! (which are parametrized by H!(M,O(L™1));

i1) infinitesimal displacements along the fiber 77!(0) of the bundle ¥, — V,
of relative -g——diﬁerentials.

These two variations are obtained from monodromy of solutions of non-
homogeneous equations paralleling (2):

" 1
Uy + Ehaua = ¢a
where v, are %-diﬂ’erential forms on M.

REMARK 1. By Kodaira-Spencer theory, deformations of families of osp(2|1)
algebras B over W — S are given by a sheaf F over W — S such that for
a distinguished point s € S, we have F(s¢) ~ B. For marked families,
the universal property of the Teichmiiller family V; enables us to identify F
in terms of the sheaf of sections of the bundle ¥, over V;, — T, of relative
%-diﬁerentials, since holomorphicity on moduli and the choice of a preferred
spin structure L, allows deformations of typeii) only. Applying the functor
A\ we recover the graded manifold (7,,.A) with A the sheaf of sections of
A\ ¥, that is, the space of infinitesimal deformations for families of graded
Riemann surfaces mentioned earlier in Proposition 3.

This is not surprising because of the correspondence between super-
families of graded Riemann surfaces and osp(2|1) families. Namely, given a
family of osp(2|1) algebras B, we have a system of generators for the sheaf
B:

(L._I,LO,Ll,G__%,G_%)(z,T)

holomorphic in z and 7. We can identify these with derivations of the graded
manifolds M, by extending the rule G% — D asin Lemma 4. It then follows
easily that a family of (1|1) graded manifolds is determined and that the
relative derivations D(z,T) generate a sheaf D with the properties required
to make this into a super-family of graded Riemann surfaces.
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Conversely, given such a super-family, a family of osp(2|1) algebras may
be constructed in terms of the kernel of the operators D3 = 82D, , which
vary holomorphically with 7 and act on sections of the sheaf .A.

REMARK 2. To achieve the desired supermoduli spaces it remains to work
out the action of the modular groups on our spaces of local deformations;
for some progress on this, see [8].

REMARK 3. For superstring applications, one has to find the correct mea-
sure of integration on the space of supermoduli. This requires a generaliza-
tion of the Weil-Petersson inner product used in constructing the bosonic
string measure. Such an inner product is regarded in [6] as the integral of
the exterior product of sl(2, C)-valued one forms, the product being taken
with respect to the Killing form on sl(2,C). Using the construction de-
scribed here, we give in [15] a natural generalisation of this to osp(2|1)
valued forms inducing a metric on supermoduli, by defining the appropriate
graded exterior product of osp(2|1)-valued one forms.

REMARK 4. The algebraic relation between solutions of (2) and (4) is a
particular case of a more general relation: solutions of (2) generate, by
(r — 1)-symmetric tensor powers, solutions of differential equations of order
r defined over the bundles L*~". The sheaves Pr-1(L'~T) of solutions to
such equations belong to exact sequences

D"
0 — Proy(L'7T) = O(L'™T) =5 O(L™) — 0

where the Dj resemble the differential operators occuring in the study of

the KdV hierarchy.
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Generating sets for finite groups

Richard M. Thomas

To Murray Macbeath on the occasion of his retirement

1. Introduction

Given positive integers m, n and k&, we are interested in finite groups
generated by two elements a and b satisfying the relations a™ = " =
(ad)* = 1. To put this another way, if (m,n, k) denotes the triangle group
defined by the presentation

<ab:a™=b"=(ab)f =1>,
then we are looking for finite homomorphic images of (m,n, k). Let

1 1
o= - + o + %
If @ > 1, then (m,n, k) is finite, and, if @ = 1, (m,n, k) is solvable; we are
interested in the case where a < 1. The largest possible such value of « is
42, in which case we have a Hurwitz group, that is a finite group generated
by two elements a and b satisfying the relations a? = b® = (ab)” = 1; for a

general survey of Hurwitz groups, see [6].

One intriguing question is the following: given particular (usually small)
values of m, n and k, how can we construct interesting finite homomorphic
images of (m, n, k)? In particular, how can we construct interesting Hurwitz
groups? Since any Hurwitz group G (and, in fact, any image of (m,n, k)
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with m, n and k pair-wise co-prime) must have a maximal normal subgroup
M with G/M a non-abelian simple group, it is reasonable to start by con-
sidering which of the finite simple groups are Hurwitz groups. The smallest
Hurwitz group is PSL(2,7), which has the presentation

<ab:a®=0"=(ab) =[a,0]' =1>.

This leads naturally to the following question: if (2,3,7;q) is the group
defined by the presentation

<ab:a® == (ab)" =[a,4)" = 1>,

when is (2, 3, 7; ¢) finite? One may readily check that (2,3,7; ¢) is trivial for
g < 3; for the remaining cases, we have:

(1) (2,3,7;4) =2 PSL(2,7) [2];

(i)  (2,3,7;5) is trivial [2];

(1)  (2,3,7;6) = PSL(2,13) [2];

Gv)  (2,3,7;7) = PSL(2,13) [24];

(v)  (2,3,7;8) & Eeq.PSL(2,7) [19];

(vi) (2,3,7;9) is infinite (23, 18];

(vil)  (2,3,7;10) is infinite [14, 12];

(viil)  (2,3,7;11) is infinite [10];

(ix) (2,3,7;q) is infinite for ¢ > 12 [16, 15].

Of course, we can have finite factor groups of (2,3, 7; ¢) even when ¢ > 9;
for example, the first Janko group J; is a homomorphic image of (2, 3,7; )
for ¢ = 10, 11, 15 and 19 (see [22] for example). We may extend the question
to ask when the group (2, 3, p; q) defined by the presentation

<ab:a’ =0 =(ab)P =[a,0]'=1>

is finite, where p > 7. Since (2, 3, p; 2) is isomorphic to A4 if p = 3 (mod 6),
Ay x Cy if p =0 (mod 6), and is trivial otherwise, and the group (2, 3, p; 3)
has order ég—z- if p is even, and is trivial otherwise [25], we will assume that
g > 4. We have the following:

(i) (2,3,8;4) = PGL(2,7) [7); (ii) (2,3,8;5) = C5.4,.C2  [7);
(i) (2,3,9;4) = Ay [7); (iv) (2,3,9;5) & C3.PSL(2,19) [26];
(v) (2,3,10;4) = C3.46.C; [7); (vi) (2,3,11;4) = PSL(2,23) [7].

Also, it was shown in [8, 9] that, if p is even, then
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(2,3,p; q) is finite & cos(“T") + cos(2_q") <1

and it was conjectured that this criterion should hold even without the
assumption that p is even. Combined with the results mentioned above,
and with the possible exception of (p,q) = (13,4), this was shown to be the
case in [16], giving:

With the possible exception of (p, q) = (13,4), the group (2,3, p; q) is infinite
if and only if p and ¢ satisfy one of the following conditions:
H)p=7,¢29; (i)p=8or9, q>6;

() p=10 or 11, g > 5; (iv)p>12,q > 4.

Returning to the question as to which finite simple groups are Hurwitz
groups, Macbeath showed [21] that PSL(2,p") is a Hurwitz group (where
p is prime and n > 1) if and only if one of the following three conditions
holds:

i)n=1,p=T7; (i) n =1,p=1 (mod 7);
(ili) n = 3,p = £2,+3 (mod 7).

It was shown in [14] that all but finitely many of the alternating groups
A, are Hurwitz groups, and then, in [4], that A4, is a Hurwitz group for
n > 168 and for all but 64 integers in the range 3 < n < 167; for further
details, and for a summary of which finite simple groups are known to be
Hurwitz groups, see [6], and, for a classification of all the Hurwitz groups
of order less that 10°, sec [5].

Having determined that a particular group K is a homomorphic image
of (m,n, k), we would like to construct new such groups G' with a normal
subgroup N such that G/N is isomorphic to K. An eclegant approach is
that introduced by Macbeath in [20]: if A is the group (2,3,7), A is a
normal subgroup of finite index in A, K is the Hurwitz group A/A, and m
is an arbitrary positive integer, then A/A’A™ is a finite abelian group and
A/A'A™ is a Hurwitz group G with normal abelian subgroup N = A/A’A™
and G/N isomorphic to K.

We present here another method of forming certain new finite homo-
morphic images of triangle groups from old. If K is a triangle group with a
faithful irreducible representation over F, with the elements of order m and
n acting fixed-point-freely, we show how to construct a larger such group
by taking a semi-direct product of a p-group with K. To be precise, we will
prove the following;:
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THEOREM A. Let K be a finite group generated by non-trivial elements u
and v satisfying the relations u™ = v™ = (uwv)¥ = 1, and suppose that p
is a prime with Op(K) # 1. Let G be a semi-direct product NK, where
N is an normal p-subgroup of G, ®(N) is central in G, and where K acts
faithfully and irreducibly on N/®(N) with u and v acting fixed-point-freely
on N/®(N)*. Then G is a homomorphic image of (m,n, k).

Before we prove this result, a few comments are appropriate.

Clearly a necessary condition that G = NK be a homomorphic image of
a triangle group is that G can be generated by two elements. It was shown
in [27] that, if K is a d-generator finite group with d > 1 and O, (K) # 1,
and if K acts faithfully and irreducibly on an elementary abelian p-group
N, then the semi-direct product N K can be generated by d elements. This
was generalized in (1], where it was shown that the hypothesis that Op (K)
is non-trivial could be omitted. In our case, K is a 2-generator group, and
so G is generated by zc and yd for some z,y € N, where ¢ and d generate
K. By a result of Gaschiitz [11], we may choose ¢ and d to be u and v.

If N is elementary abelian, and if an element of a minimal generating
set {u,v} for K is a p’-element centralizing a non-trivial element of N, say
v has order n and centralizes z € N*, then we would have < (vz)" >
=<z >=<z>and < (vz)? > =< v’ > =< v > andso G =
< w,vz >. Unfortunately, this does not suffice, as we are interested in
showing that the new pair of elements satisfies the appropriate relations,
as well as generating the group, and we do not have (vz)* = 1. In fact,
while NK is always 2-generated for a Hurwitz group K acting faithfully
and irreducibly on N, NK need not be a Hurwitz group; for example, any
extension of an elementary abelian group N by PSL(2,7) acting faithfully
and irreducibly on N is 2-generated, but not all such extensions are Hurwitz
groups; see [3] for details.

We can say a little more than is explicitly stated in Theorem A. The
essence of the result is that, if we have a homomorphism 6 of (m, n, k) onto
K mapping the generators of (m,n,k) of orders m and n onto uw and v
respectively, then there is a homomorphism ¢ of (m,n,k) onto G. If u, v
and uv have orders precisely m, n and k in K, then we have generators '
and v' for G such that v/, v' and uw'v' have orders m, n and k respectively
(where u' € Nu and v’ € Nv). So the kernel of ¢ is torsion-free, and hence
a surface group. Moreover, ¢ is compatible with 6, i.e. if welet v : G — K
be the natural homomorphism defined by (nk)y =k forn € N and k € I,
then 8 = ¢ 0 9.
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2. Notation and preliminary results

In this section, we outline the notation we use, and state some standard
results. All groups from now on are finite. (This should be thought of as a
convention, as opposed to a theorem!).

We hope the notation is reasonably standard, and so confine ourselves
to a few remarks. We let F, denote the field of p elements for any prime
p. For any group G, G! is the set of non-trivial elements of G, ®(G) is
the Frattini subgroup of G, and O, (G) the largest normal subgroup of G
whose order is not divisible by the prime p. With regard to conjugacy and
commutator conventions, a® stands for z~'az and [a, z] for a™!
any prime power n, E, denotes the elementary abelian group of order n.

z laz. For

For the convenience of the reader, we also list some of the standard
results we shall be using. We start with the Schur-Zassenhaus theorem:

2.1. Let G be a group, = be a set of primes and H be a normal Hall «-
subgroup of G (i.e. a normal w-subgroup such that [G : H] is a «'-
number). Then there is a complement C to H in G, and all such com-
plements are conjugate in G.

PROOF. See (6.2.1) of [13] for example.

2.2. Let G be a group, ¢ € G and ¢ be a fixed-point-free automorphism of
G of order n. Let S be the semi-direct product G < ¢ >, where < ¢ >
is cyclic of order n and ¢ acts as ¢ on G. Then zc has order n in S.

ProoF. By (10.1.1) of [13], we have that zzt 2T = 1, ie.
(zc)™ = 1. Since zcG has order n in S/G, zc has order n in G as required.

2.3. Let P be a normal p-subgroup of G and C be a subgroup of G such that
G = PC, and suppose that F is a characteristic subgroup of P such that
PNC < Fand [F,C] =1. Then O,(G/P) = 0,(C)P/P.

PRrOOF. Since Oy (C) is normal in C', Op(C)P is normal in CP = G, so
that O, (C)P/P is a normal p'-subgroup of G/P, and hence O, (C)P/P <
0, (G/P).

Let L be the subgroup of G containing P such that O,(G/P) = L/P.
Using (2.1), we may write L as PD where D is a p'-subgroup of C; in

particular, FN D = 1. Since [F, D] = 1, we have that FD = F x D, so that
D is the unique Hall p'-subgroup of F'D.

Since L is normal in G, we have that [L,C] < L, and so [D,C] < L.
But [D,C] < C, so that [D,C] < LNC =PDNC =(PNC)D < FD.
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Since C normalizes F', we have that [FD,C] < FD. Now C normalizes FD
and D is characteristic in F'D, so that C must normalize D. We see that

D < 0,(C), and then O, (G/P) = DP/P < O,(C)P/P as required.

2.4, If G is a group, N is a normal subgroup of G, U < G and N < ®(U),
then N < &(G).

PROOF. See (9.3.7) of [17] for example.

3. Proofs of results

Our approach is to modify the argument of [27] to show that, under the
hypotheses of Theorem A, we can find a generating pair for G satisfying the
appropriate relations. Rather than confuse the reader (and the author) by
trying to describe how the argument in [27] should be modified, we give the
new proof in full. Essentially, the work in proving Theorem A is summed
up in the following result:

THEOREM B. Let G be a finite group with a normal p-subgroup N such
that G/N acts faithfully and irreducibly on N/®(N). Suppose that u and
v are elements of G such that G/N is generated by uN and vN, that ®(N)
is central in G, and that O, (G/N) # 1. Then for some z € N

G =<uz,z 'v>.

ProoF oF THEOREM B. Let K = < u,v >, so that G = NK, and let
Q = Op(K) and V = N/®(N). Let T be a set of coset representatives
for ®(N) in N. For any z € X, we let K, denote < uz,z " 'v >, so that
G =NK,. If K, = G for some z € %, we have finished; so suppose that
K, <GforallzeXx.

Now VN K,®(N)/®(N) is a K-invariant subgroup of V. If
VNEK,®(N)/®(N)=Y,
then we have that N = NN K, ®(N) = (K, NN)®(N) and
G=K,N=K,®(N).
Since ®(N) < ®(G) by (2.4), we have that G = K, a contradiction. So we

must have that VN K, ®(N)/®(N) is a proper K-invariant subgroup of V,
and so VN K, ®(N)/®(N)=1,ie. K,NN < ®(N)forall z € Z.
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Let Q; denote Oy (K;); in particular, uv normalizes @), for all z € Z.
Since NQ;/N = O0,(G/N) = NQ/N by (2.3), we have that Q # 1 (by
hypothesis) and that NQ, = NQ for all z € %, where Q, N N = 1. Since
G/N acts faithfully on V, we have Cy(Q,) < V; since K, normalizes
Cv(Qz) and K, acts irreducibly on V, we have that Cy(Q,) = 1.

If Q. B(N) = Qy®(N) for z,y € I, then @, P(N) is normalized by uz
and uy, and hence by z~'y. Since 2 7'y € N, we have

[Qz8(N),27'y] < Q:B(N)NN = (N),

so that z71y®(N) € Cy(Q;) = 1, i.e. z®(N) = y®(N), and then z = y.
So, if z # y, then Q,®(N) # Q,®(N); thus

{Q:2(N):z € T} =T

Now, since QNN = 1for all z € %, cach Q;®(N)/®(N) is a p’-complement
to the normal p-subgroup N/®(N) of NQ/®(N); so, given z € X, we
have Q,®(N)/®(N) = (Q®(N)/®(N))*®*®™) for some z € N by (2.1).
Writing z as sf with s € ¥ and f € ®(N), we have Q,®(N)/®(N) =
(QB(N)/B(N))* TN 50 that

{Q.8(N):z € T} C{Q*®(N): s € T}.
But [{Q,®(N):z € £}| = |X], and so
{Q.3(N): 2 € T} = {Q*B(N) : s € B}

Let ¢ be any element of ¥, so that Q’-ICD(N) = Q,®(N) for some z €
¥.. Since uv normalizes Q,, uv normalizes Q’-ICD(N), ie. Q’-I"UCD(N) =
Q' ®(N), and hence Q¥ *V*@(N) = QB(N). Since Q*")™" = Q, we have
that Q(?)7 7 (¥)iG(N) = Q®(N), i.c. [uv,t] normalizes QB(N). Since
[uv, t] € [uv, N] < N, we have that

[[uv,t],QB(N)] < NNQI(N) = &(N);

hence [uv,t])®(N) € Cy(Q) = 1, and so [uv,t] € &(N). So we must have
that [uv,t] € ®(N) for all ¢t € %, so that uv centralizes V, contradicting the
fact that K acts faithfully on V. This completes the proof of Theorem B.

Having proved Theorem B, we can now deduce Theorem A:
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PrOOF OF THEOREM A. By Theorem B, there exists z € N with
<uz,z 'v>=0G.

Since u and v act fixed-point-freely on N, u; = uz and v; = 2~ v generate
G and satisfy v = v} = (u;v1)* = 1 by (2.2), and the result follows.
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Group actions on trees

with and without fixed points

David L. Wilkens

To Murray Macbeath on the occasion of his retirement

In [4; 3.1] it is shown that an R-tree T, on which a group G acts,
has a unique minimal invariant subtree if there are elements of G with no
fixed points. The situation where each element of G fixes some point of T
splits into two cases depending on whether the action is bounded or not.
In the unbounded case, when T has no invariant subtree, it is shown in
Theorem 1 that G is given by an infinite tower of subgroups. In [3] Chiswell
constructs an action on a tree that corresponds to a given Lyndon length
function defined on . This construction is used in Theorem 2 to establish
a necessary and sufficient condition for two length functions to arise from
the same action of G on some tree T', again in the case where each element
of G fixes some point of T'.

An R-tree T is a non-empty metric space, with metric d, such that
there is no subspace homeomorphic to a circle, and for any two points
u, v € T there is a unique isometry a : [0,7] — T, with a(0) = u, a(r) = v,
where r = d(u,v). It is shown in section 4 of [5] that the completion of
an R-tree is again an R-tree. The definition is originally due to Tits [8],
where completeness is assumed. In this paper all R-trees will be assumed
to be complete. This allows the results of Theorem 1 to be economically
expressed. Basic properties of R-trees are established in [1] and [4], where
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reference may be made for the following.

Let a group G act as a group of isometries on an R-tree 7. For z € G
let 7% = {u € T | zu = u}, which is either empty or is a subtree of T'. Let
N ={z € G|T* #0}. Then N is a normal subset of G. An element z ¢ N
has a unique axis A, in T, that is an isometric image of R on which z acts
as a translation. A subset H of G is said to have bounded action if for each
u € T the set {d(u,zu) |z € H} is bounded.

A Lyndon length function on G is a function | : G — R such that for all
z,y,2 €G

Al'. [(1)=0

A2. lz)=1(z"1)

A4 . c(z,y) < c(z,2) implies c(z,y) = c(y,2),
where 2¢(z,y) = l(z) + I(y) — I(zy ™).

The definition is due to Lyndon [7], and it is an easy consequence of the
axioms that I(z), c(z,y) > 0.

In [3] Chiswell showed that if G acts on T then for v € T a length
function [, is given by l,(z) = d(u,zu). He also gave a construction of a
tree T, and an action of G, that corresponds to a given length function 1.
That the construction yields an R-tree is proved in [2] and [5]. Lemma 3
of [6] states that z € N if and only if I(z?) < I(z). We will make frequent
use of Chiswell’s construction, which is given below, in the notation of this
paper. T is the completion of the following space.

Points are equivalence classes [z,m], for ¢ € G, where 0 < m < I(z),
under the equivalence relation (z,m) ~ (y,n) if and only if m = n <
c(z~',y~!). The base-point u = [z,0], for any z € G.

The metric d is given by

_ |m— n| if min(m,n) < c(x_l’y_l)
d([z,m], [y, n]) = { m+n—2c(z"y™!) if min(m,n) > c(z7!,y7?)

The action of G is defined by

z,m| = v, i(y) —m) if m<(e™,y)
o= { 1) Do 2e ) s et

The following is Proposition 3.3 of [10].
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LEMMA 1. Ifz,y,zy € N then two of i(z), l(y), I(zy) are equal with the
third no greater.

LEMMA 2. Let | be a length function with N = G having correspond-
ing action on the Chiswell tree T. If z,y € G, with 0 < 2b < () and
w=[z,b] € T, then

_ w if I(y)<2b
v = { [y, i(y)— 8]  if I(y)>2b

and 1,(y) = max(l(y) — 25,0).

Proor. If I(y) < 2b < I(z) then by Lemma 1, l(yz) = I(z), and so
2c(z7',y) = l(y) < 2b. Hence y[z,b) = [yz,l(y) + b — 2¢(z7,y)] =
[yz,8). By Lemma 1, l(z"'yz) < l(yz) = |(z), and thus 2¢(z 7, (yz)™!) =
2U(z) — l(z"'yz) > l(z) > 2b. Hence [yz,b] = [z,b] = w.

If i(y) > 2b then by Lemma 1, I(yz) < max(l(z),l(y)) and so
2¢(z™!,y) > min({(z),l(y)) > 2b. Also by replacing y by y~!, c(z~,y™1) >
b. Hence y(z,d] = [y, l(y) — b]. For I(y) = 2b then y[z,d] = [y, 8] = [z, d].

Now l,(y) = d(w,yw) and so for I(y) < 2b, I,(y) = 0. If I(y) > 2b
then by Lemma 1, {(z7'y) = l(y) and so 2¢(z~',y7!) = I(z) > 2b =
2min(h,(y) — 8). Thus k() = d([e,), [, 1(s) — H) = () — 8) — b =
I(y)— 2b. W

An action of a group on an R-tree is said to be minimal if there is
no proper subtree on which G acts. If G acts on T and u € T then the
completion of the union of the geodesics from u to zu , for all z € G, is
a subtree T, of T, which is a copy of Chiswell’s tree corresponding to the
length function ! = I,. It follows that any minimal action must be on a
Chiswell tree arising from some length function.

THEOREM 1. Let G act on an R-tree T.

(i) If N # G then T has a unique minimal Invariant subtree, namely the
completion of the union of all axes in T.

(ii) If N = G has bounded action then T contains minimal invariant sub-
trees, which are single points fixed by G.

(iti) If N = G has unbounded action then T contains no minimal Invariant
subtree. This case can occur if and only if G has a tower of subgroups

HyCH, CH,C... with UH,-:G.
i>0
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ProoF. Case (i) is Proposition 3.1 of [4], except that we require our trees
to be complete.

If G = N has bounded action then by Theorem 3.2 of [11], G fixes some
point of T. A minimal invariant subtree is therefore given by any such point

fixed by G.

Suppose G = N has unbounded action. To show that any such action
cannot be minimal we can assume that T is given by Chiswell’s construction
from an unbounded length function [. Take z € G with 2b = l(z) > 0 and
w = [z,0) € T. Fory € G, yw is given by Lemma 2. If {(y) < I(z) then
yw = w and if [(y) > I(z) then yw = [y,{(y) — b]. Now by Lemma 1, if
l(y) > U(z) then l(z7'y) = I(y) and so 2¢(z~!,y~') = I(z) = 2b. Hence
ly,d] = [z,b] = w. It follows that the geodesic from w to yw contains only
points [y, m] with m > b. The completion of the union of all such geodesics,
which is the Chiswell tree arising from 1,,, is thus a proper invariant subtree

of T.

If 1 is unbounded then there exist 0 = ry < 7, < 7y < ... withr,, - ©
and elements z; € G with {(z;) = r;. Let H; = {z € G | [(z) < r;}, then by
Lemma 1, H; is a subgroup of GG, and

HyCHiCHyC... with| JHi=G.
i>0
Conversely if there is such a tower of subgroups of G then proposition 4

of [9) shows that an unbounded length function ! with N = G is given by
l(z)=1inf{i; z € H;}. 1
It is possible for a bounded [ to be given by an infinite tower of subgroups

of G, as described in [9]. Completeness is required here for the corresponding
Chiswell tree to have a fixed point of G (see the proof of Theorem 3.2 of

[11)).

For two length functions [, I' : G — R, write | ~ I’ if there is an action
of G on some tree T, and points v, v € T with I = [, I' = [,. A length
function { is said to be non-Archimedean if N = G.

THEOREM 2. Let !, I' : G — R be non-Archimedean length functions. Then
I ~ ' if and only if there exists r, s > 0 such that for ally € G

max(I(y) — r,0) = max(!'(y) — s,0).

PrOOF. The condition can only be satisfied if both ! and  are bounded
or both are unbounded. If both are bounded then for suitable r, s > 0 the
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lengths can be reduced to zero and the condition is satisfied. By Theorem
3.2 of [11] the corresponding actions of G on Chiswell’s trees have fixed
points. Identifying the two trees at a fixed point gives a tree from which
both I and !’ are defined.

Suppose that [ and I’ arise from an unbounded action of G on a tree
T, withl =1, and I’ = 1,. Then T contains invariant subtrees T, and T,
which are given by Chiswell’s construction from ! and !’ respectively. If T,
and T, are disjoint then by [4; 1.1] there is a unique spanning geodesic from
a point v’ € T, to a point v' € T,,. Forz € G, zu' € T, and zv' € T, and
since d(zu',zv") = d(v',v") it follows that zu’ = v’ and zv' = v'. Hence
G fixes each point of the spanning geodesic. But this is not possible for an
unbounded action by Theorem 3.2 of [11]. The subtrees T, and T, must
therefore contain a common point w.

Since w € Ty, w = [z,b] for some ¢ € G with 0 < b < I(z). If 2b < ()
then by applying Lemma 2 to the action of G on the Chiswell tree Ty,
lw(y) = max(I(y) — 2b,0). If l(z) < 2b then 28 = 2i(z) — 2b < I(z). By
Lemma 1, 2¢(z™!,z) > I(z) > 2V and so z[z,d'] = [2,l(z) — ¥] = [2,}).
So w = zw' where w' = [z,¥]. Hence lu(y) = lzw (y) = d(yzw',zw’) =
d(z " lyzw',w') = ly (27 'yz) = max(l(z~'yz) — 2¥',0) by Lemma 2. Since
w € T, the same analysis can be carried out replacing [ by I'. Moreover we
can assume that w = [,8] in T, with 2b < I(z), or otherwise w could be
replaced by zw. Hence for some r, s > 0 and z € G, ly(y) = max({(y) —
7,0), l,(y) = max(l'(z"'yz) — s5,0). Equating l,(y) and I),(y) gives the
condition max(I(y)—r,0) = max(!'(z~'yz)—s,0). The condition still holds
if r, s are increased by the same amount; and so r, s can be taken as large as
required. By applying Lemma 1 twice I'(z™'y) = I'(y) and I'(z "'yz) = I'(y)
if '(y) > I'(z). Also I'(z7'y) < U'(z) and UI'(z™'yz) < I'(z) if I'(y) < U'(z).
Thus for s > (z), max('(z " 'yz) — 5,0) = max(I'(y) — s,0), giving the
required condition.

Conversely suppose that length functions I, I are such that max(l(y) —
r,0) = max({'(y) —s,0). Chiswell’s construction gives a tree T, with I, = I,
and a tree T, with [, = I'. By Lemma 2 each of these trees contains a
subtree on which G acts arising from Chiswell’s construction associated with
the length function I"(y) = max(I(y) — r,0) = max(!'(y) — s,0). Identifying
these subtrees in Ty, and T, gives a tree from which both [ and I’ are defined.
In the first paragraph of this proof, and also here, two trees are identified
by a common subtree. That this results in a tree follows from section 3 of
[5] or section 2 of [11] concerning the four-point condition for trees.
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